References
- Abramoff, M. D., P. J. Magelhaes, and S. J. Ram. 2004. Image processing with ImageJ. Biophotonics Ind. 11: 36-42.
- DeLisa, M. P., P. Lee, T. Palmer, and G. Georgiou. 2004. Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J. Bacteriol. 186: 366- 373. https://doi.org/10.1128/JB.186.2.366-373.2004
- Ferrer-Miralles, N., J. Domingo-Espín, J. L. Corchero, E. Vázquez, and A. Villaverde. 2009. Microbial factories for recombinant pharmaceuticals. Microb. Cell Fact. 8: 17. https://doi.org/10.1186/1475-2859-8-17
- Fu, Z. B., K. L. Ng, T. L. Lam, and W. K. R. Wong. 2005. Cell death caused by hyper-expression of a secretory exoglucanase in Escherichia coli. Protein Expr. Purif. 42: 67-77. https://doi.org/10.1016/j.pep.2005.03.029
- Fu, Z. B., K. L. Ng, C. Lam, K. Leung, W. Yip, and W. K. R. Wong. 2006. A two-stage refinement approach for the enhancement of excretory production of an exoglucanase from Escherichia coli. Protein Expr. Purif. 48: 205-214. https://doi.org/10.1016/j.pep.2006.01.013
- Gant, V. A., G. Warnes, I. Phillips, and G. F. Savidge. 1993. The application of flow cytometry to the study of bacterial responses to antibiotics. J. Med. Microbiol. 39:147-154. https://doi.org/10.1099/00222615-39-2-147
- Jovanovic, G., L. J. Lloyd, M. P. H. Stumpf, A. J. Mayhew, and M. Buck. 2006. Induction and function of the phage shock protein extra-cytoplasmic stress response in Escherichia coli. J. Biol. Chem. 281: 21147-21161. https://doi.org/10.1074/jbc.M602323200
- Kleerebezem, M. and J. Tommassen. 1993. Expression of the pspA gene stimulates efficient protein export in Escherichia coli. Mol. Microbiol. 7: 947-956. https://doi.org/10.1111/j.1365-2958.1993.tb01186.x
- Kleerebezem, M., W. Crielaard, and J. Tommassen. 1996. Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the proton motive force under stress conditions. EMBO J. 15: 162-171.
- Kobayashi, R., T. Suzuki, and M. Yoshida. 2007. Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol. Microbiol. 66: 100-109. https://doi.org/10.1111/j.1365-2958.2007.05893.x
- Lam, T., S. C. R. Wong, and W. K. R. Wong. 1997. Enhancement of extracellular production of a Cellulomonas fimi exoglucanase in Escherichia coli by the reduction of promoter strength. Enzyme Microb. Technol. 20: 482-488. https://doi.org/10.1016/S0141-0229(96)00203-7
- Mason, D. J., R. Lopéz-Amorós, R. Allman, J. M. Stark, and D. Lloyd. 1995. The ability of membrane potential dyes and calcafluor white to distinguish between viable and non-viable bacteria. J. Appl. Bacteriol. 78: 309-315. https://doi.org/10.1111/j.1365-2672.1995.tb05031.x
- Mergulhão, F. and G. Monteiro. 2004. Secretion capacity limitations of the Sec pathway in Escherichia coli. J. Microbiol. Biotechnol. 14: 128-133.
- Model, P., G. Jovanovic, and J. Dworkin. 1997. The Escherichia coli phage shock protein (psp) operon. Mol. Microbiol. 24: 255-261. https://doi.org/10.1046/j.1365-2958.1997.3481712.x
- Papanikou, E., S. Karamanou, and A. Economou. 2007. Bacterial protein secretion through the translocase nanomachine. Nat. Rev. Microbiol. 5: 839-851. https://doi.org/10.1038/nrmicro1771
- Sambrook, J. and D. Russell. 2001. Molecular Cloning: A Laboratory Manual; 3rd Ed. Cold Spring Harbor Laboratory Press, New York
- Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
- Vrancken, K., S. De Keersmaeker, N. Geukens, E. Lammertyn, J. Anne, and L. Van Mellaert. 2006. pspA Over-expression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion. Appl. Microbiol. Biotechnol. 73: 1150-1157. https://doi.org/10.1007/s00253-006-0571-7
- Walsh, G. 2006. Biopharmaceutical benchmarks. 2006. Nat. Biotechnol. 24: 769-776. https://doi.org/10.1038/nbt0706-769
- Wang, Y. Y., K. L. Ng, C. C. Lam, K. N. Chan, K. F. Sze, Z. B. Fu, and W. K. R. Wong. 2010. Efficient Bacillus subtilis promoters for graded expression of heterologous genes in Escherichia coli. Res. J. Biotechnol. 5: 5-14. https://doi.org/10.1002/biot.201090003
- Wong, D. K., K. H. E. Lam, C. K. P. Chan, Y. C. V. Wong, W. K. R. Wong, and J. Hackett. 1998. Extracellular expression of human epidermal growth factor encoded by an Escherichia coli K-12 plasmid stabilized by the ytl2-incR system of Salmonella Typhimurium. J. Ind. Microbiol. Biotechnol. 21: 31-36. https://doi.org/10.1038/sj.jim.2900557
- Wong, W. K. R., E. Lam, R. C. Huang, S. C. Wong, C. Morris, and J. Hackett. 2001. Applications and efficient large-scale production of recombinant human epidermal growth factor. Biotechnol. Genet. Eng. Rev. 18: 51-71. https://doi.org/10.1080/02648725.2001.10648008
Cited by
- Cloning and characterization of a novel cellobiase gene, cba3, encoding the first known β-glucosidase of glycoside hydrolase family 1 of Cellulomonas biazotea vol.493, pp.1, 2011, https://doi.org/10.1016/j.gene.2011.11.027
- A revolutionary approach facilitating co-expression of authentic human epidermal growth factor and basic fibroblast growth factor in both cytoplasm and culture medium of Escherichia coli vol.97, pp.20, 2013, https://doi.org/10.1007/s00253-013-5090-8
- Subcellular localization, interactions and dynamics of the phage‐shock protein‐like Lia response in Bacillus subtilis vol.92, pp.4, 2011, https://doi.org/10.1111/mmi.12586
- The Cytoplasmic and Periplasmic Expression Levels and Folding of Organophosphorus Hydrolase Enzyme in Escherichia coli vol.8, pp.12, 2011, https://doi.org/10.5812/jjm.17790