DOI QR코드

DOI QR Code

Thiazinogeldanamycin, a New Geldanamycin Derivative Produced by Streptomyces hygroscopicus 17997

  • Ni, Siyang (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Wu, Linzhuan (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Wang, Hongyuan (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Gan, Maoluo (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Wang, Yucheng (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • He, Weiqing (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences) ;
  • Wang, Yiguang (Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences)
  • Received : 2010.11.08
  • Accepted : 2011.03.14
  • Published : 2011.06.28

Abstract

A new geldanamycin (GDM) derivative was discovered and isolated from the fermentation broth of Streptomyces hygroscopicus 17997. Its chemical structure was elucidated as thiazinogeldanamycin by LC-MS, sulfur analysis, and NMR. The addition of cysteine to the fermentation medium significantly stimulated the production level of thiazinogeldanamycin, suggesting cysteine as a precursor of thiazinogeldanamycin production. Although showing a decreased cytotoxicity against HepG2 cancer cells, thiazinogeldanamycin exhibited an improved water solubility and photostability. Thiazinogeldanamycin may represent the first natural GDM derivative characterized so far that uses GDM as its precursor. Its appearance also clearly indicates that an appropriate end-point of fermentation is of critical importance for the maximal production of GDM by Streptomyces hygroscopicus 17997.

Keywords

References

  1. Charifson, P. S., J. J. Corkery, M. A. Murcko, and W. P. Walters. 1999. Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 42: 5100-5109. https://doi.org/10.1021/jm990352k
  2. Cricchio, R., P. Antonini, and G. Sartori. 1980. Thiazorifamycins. III. Biosynthesis of rifamycins P, Q and verde, novel metabolites from a mutant of Nocardia mediterranea. J. Antibiot. (Tokyo) 33: 842-846. https://doi.org/10.7164/antibiotics.33.842
  3. DeBoer, C., P. A. Meulman, R. J. Wnuk, and D. H. Peterson. 1970. Geldanamycin, a new antibiotic. J. Antibiot. (Tokyo) 23: 442-447. https://doi.org/10.7164/antibiotics.23.442
  4. Ge, J., E. Normant, J. R. Porter, J. A. Ali, M. S. Dembski, Y. Gao, et al. 2006. Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90. J. Med. Chem. 49: 4606-4615. https://doi.org/10.1021/jm0603116
  5. Hong, Y. S., D. Lee, W. Kim, J. K. Jeong, C. G. Kim, J. K. Sohng, J. H. Lee, S. G. Paik, and J. J. Lee. 2004. Inactivation of the carbamoyltransferase gene refines post-polyketide synthase modification steps in the biosynthesis of the antitumor agent geldanamycin. J. Am. Chem. Soc. 126: 11142-11143. https://doi.org/10.1021/ja047769m
  6. Hosokawa, N., H. Naganawa, H. Inuma, M. Hamada, T. Takeuchi, T. Kanbe, and M. Hori. 1995. Thiazinotrienomycins, new ansamycin group antibiotics. J. Antibiot. (Tokyo) 48: 471-478. https://doi.org/10.7164/antibiotics.48.471
  7. Lang, W., G. W. Caldwell, J. Li, G. C. Leo, W. J. Jones, and J. A. Masucci. 2007. Biotransformation of geldanamycin and 17- allylamino-17-demethoxygeldanamycin by human liver microsomes: Reductive versus oxidative metabolism and implications. Drug Metab. Dispos. 35: 21-29.
  8. Le Brazidec, J. Y., A. Kamal, D. Busch, L. Thao, L. Zhang, G. Timony, et al. 2004. Synthesis and biological evaluation of a new class of geldanamycin derivatives as potent inhibitors of Hsp90. J. Med. Chem. 47: 3865-3873. https://doi.org/10.1021/jm0306125
  9. Liu, A. M., L. Z. Wu, Y. G. Wang, H. T. Zhang, W. Q. He, Y. H. Li, and K. Zhang. 2008. A color reaction method for early preliminary discrimination of benzenic ansamycins [In Chinese]. Chin. J. Antibiot. 33: 403-406.
  10. Nishio, M., J. Kohno, M. Sakurai, S. I. Suzuki, N. Okada, K. Kawano, and S. Komatsubara. 2000. TMC-135A and B, new triene-ansamycins, produced by Streptomyces sp. J. Antibiot. (Tokyo) 53: 724-727. https://doi.org/10.7164/antibiotics.53.724
  11. Rascher, A., Z. Hu, G. O. Buchanan, R. Reid, and C. R. Hutchinson. 2005. Insights into the biosynthesis of the benzoquinone ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption. 2005. Appl. Environ. Microbiol. 71: 4862-4871. https://doi.org/10.1128/AEM.71.8.4862-4871.2005
  12. Roe, S. M., C. Prodromou, R. O'Brien, J. E. Ladbury, P. W. Piper, and L. H. Pearl. 1999. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42: 260-266. https://doi.org/10.1021/jm980403y
  13. Schnur, R. C., M. L. Corman, R. J. Gallaschun, B. A. Cooper, M. F. Dee, J. L. Doty, et al. 1995. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J. Med. Chem. 38: 3806-3812. https://doi.org/10.1021/jm00019a010
  14. Schnur, R. C., M. L. Corman, R. J. Gallaschun, B. A. Cooper, M. F. Dee, J. L. Doty, et al. 1995. erbB-2 oncogene inhibition by geldanamycin derivatives: Synthesis, mechanism of action, and structure-activity relationships. J. Med. Chem. 38: 3813- 3820. https://doi.org/10.1021/jm00019a011
  15. Shin, J. C., Z. Na, D. H. Lee, W. C. Kim, K. Lee, Y. M. Shen, S. G. Paik, Y. S. Hong, and J. J. Lee. 2008. Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomyces hygroscopicus JCM4427. J. Microbiol. Biotechnol. 18: 1101-1108.
  16. Stebbins, C. E., A. A. Russo, C. Schneider, N. Rosen, F-U. Hartl, and N. P. Pavletich. 1997. Crystal structure of an Hsp90- geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell 89: 239-250. https://doi.org/10.1016/S0092-8674(00)80203-2
  17. Wanga, R., L. Laib, and S. Wanga. 2002. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16: 11-26. https://doi.org/10.1023/A:1016357811882

Cited by

  1. New Geldanamycin Analogs from Streptomyces hygroscopicus vol.22, pp.11, 2011, https://doi.org/10.4014/jmb.1206.06026
  2. Identification of 6-demethoxy-6-methylgeldanamycin and its implication of geldanamycin biosynthesis vol.67, pp.2, 2011, https://doi.org/10.1038/ja.2013.94
  3. Two herbimycin analogs, 4,5-dihydro-(4S)-4-hydroxyherbimycin B and (15S)-15-hydroxyherbimycin B, from Streptomyces sp. CPCC 200291 vol.68, pp.7, 2011, https://doi.org/10.1038/ja.2015.12
  4. New C-19-modified geldanamycin derivatives: synthesis, antitumor activities, and physical properties study vol.18, pp.8, 2016, https://doi.org/10.1080/10286020.2016.1160896
  5. Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.00773