References
- Charifson, P. S., J. J. Corkery, M. A. Murcko, and W. P. Walters. 1999. Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem. 42: 5100-5109. https://doi.org/10.1021/jm990352k
- Cricchio, R., P. Antonini, and G. Sartori. 1980. Thiazorifamycins. III. Biosynthesis of rifamycins P, Q and verde, novel metabolites from a mutant of Nocardia mediterranea. J. Antibiot. (Tokyo) 33: 842-846. https://doi.org/10.7164/antibiotics.33.842
- DeBoer, C., P. A. Meulman, R. J. Wnuk, and D. H. Peterson. 1970. Geldanamycin, a new antibiotic. J. Antibiot. (Tokyo) 23: 442-447. https://doi.org/10.7164/antibiotics.23.442
- Ge, J., E. Normant, J. R. Porter, J. A. Ali, M. S. Dembski, Y. Gao, et al. 2006. Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90. J. Med. Chem. 49: 4606-4615. https://doi.org/10.1021/jm0603116
- Hong, Y. S., D. Lee, W. Kim, J. K. Jeong, C. G. Kim, J. K. Sohng, J. H. Lee, S. G. Paik, and J. J. Lee. 2004. Inactivation of the carbamoyltransferase gene refines post-polyketide synthase modification steps in the biosynthesis of the antitumor agent geldanamycin. J. Am. Chem. Soc. 126: 11142-11143. https://doi.org/10.1021/ja047769m
- Hosokawa, N., H. Naganawa, H. Inuma, M. Hamada, T. Takeuchi, T. Kanbe, and M. Hori. 1995. Thiazinotrienomycins, new ansamycin group antibiotics. J. Antibiot. (Tokyo) 48: 471-478. https://doi.org/10.7164/antibiotics.48.471
- Lang, W., G. W. Caldwell, J. Li, G. C. Leo, W. J. Jones, and J. A. Masucci. 2007. Biotransformation of geldanamycin and 17- allylamino-17-demethoxygeldanamycin by human liver microsomes: Reductive versus oxidative metabolism and implications. Drug Metab. Dispos. 35: 21-29.
- Le Brazidec, J. Y., A. Kamal, D. Busch, L. Thao, L. Zhang, G. Timony, et al. 2004. Synthesis and biological evaluation of a new class of geldanamycin derivatives as potent inhibitors of Hsp90. J. Med. Chem. 47: 3865-3873. https://doi.org/10.1021/jm0306125
- Liu, A. M., L. Z. Wu, Y. G. Wang, H. T. Zhang, W. Q. He, Y. H. Li, and K. Zhang. 2008. A color reaction method for early preliminary discrimination of benzenic ansamycins [In Chinese]. Chin. J. Antibiot. 33: 403-406.
- Nishio, M., J. Kohno, M. Sakurai, S. I. Suzuki, N. Okada, K. Kawano, and S. Komatsubara. 2000. TMC-135A and B, new triene-ansamycins, produced by Streptomyces sp. J. Antibiot. (Tokyo) 53: 724-727. https://doi.org/10.7164/antibiotics.53.724
- Rascher, A., Z. Hu, G. O. Buchanan, R. Reid, and C. R. Hutchinson. 2005. Insights into the biosynthesis of the benzoquinone ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption. 2005. Appl. Environ. Microbiol. 71: 4862-4871. https://doi.org/10.1128/AEM.71.8.4862-4871.2005
- Roe, S. M., C. Prodromou, R. O'Brien, J. E. Ladbury, P. W. Piper, and L. H. Pearl. 1999. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42: 260-266. https://doi.org/10.1021/jm980403y
- Schnur, R. C., M. L. Corman, R. J. Gallaschun, B. A. Cooper, M. F. Dee, J. L. Doty, et al. 1995. Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J. Med. Chem. 38: 3806-3812. https://doi.org/10.1021/jm00019a010
- Schnur, R. C., M. L. Corman, R. J. Gallaschun, B. A. Cooper, M. F. Dee, J. L. Doty, et al. 1995. erbB-2 oncogene inhibition by geldanamycin derivatives: Synthesis, mechanism of action, and structure-activity relationships. J. Med. Chem. 38: 3813- 3820. https://doi.org/10.1021/jm00019a011
- Shin, J. C., Z. Na, D. H. Lee, W. C. Kim, K. Lee, Y. M. Shen, S. G. Paik, Y. S. Hong, and J. J. Lee. 2008. Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomyces hygroscopicus JCM4427. J. Microbiol. Biotechnol. 18: 1101-1108.
- Stebbins, C. E., A. A. Russo, C. Schneider, N. Rosen, F-U. Hartl, and N. P. Pavletich. 1997. Crystal structure of an Hsp90- geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell 89: 239-250. https://doi.org/10.1016/S0092-8674(00)80203-2
- Wanga, R., L. Laib, and S. Wanga. 2002. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16: 11-26. https://doi.org/10.1023/A:1016357811882
Cited by
- New Geldanamycin Analogs from Streptomyces hygroscopicus vol.22, pp.11, 2011, https://doi.org/10.4014/jmb.1206.06026
- Identification of 6-demethoxy-6-methylgeldanamycin and its implication of geldanamycin biosynthesis vol.67, pp.2, 2011, https://doi.org/10.1038/ja.2013.94
- Two herbimycin analogs, 4,5-dihydro-(4S)-4-hydroxyherbimycin B and (15S)-15-hydroxyherbimycin B, from Streptomyces sp. CPCC 200291 vol.68, pp.7, 2011, https://doi.org/10.1038/ja.2015.12
- New C-19-modified geldanamycin derivatives: synthesis, antitumor activities, and physical properties study vol.18, pp.8, 2016, https://doi.org/10.1080/10286020.2016.1160896
- Atmospheric Precipitations, Hailstone and Rainwater, as a Novel Source of Streptomyces Producing Bioactive Natural Products vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.00773