DOI QR코드

DOI QR Code

Characterization of Plant-Growth-Promoting Traits of Acinetobacter Species Isolated from Rhizosphere of Pennisetum glaucum

  • Rokhbakhsh-Zamin, Farokh (Department of Microbiology, University of Pune) ;
  • Sachdev, Dhara (Department of Microbiology, University of Pune) ;
  • Kazemi-Pour, Nadia (Institute of Bioinformatics and Biotechnology, University of Pune) ;
  • Engineer, Anupama (Microbial Science Division, Agharkar Research Institute (ARI)) ;
  • Pardesi, Karishma R. (Department of Microbiology, University of Pune) ;
  • Zinjarde, Smita (Institute of Bioinformatics and Biotechnology, University of Pune) ;
  • Dhakephalkar, Prashant K. (Microbial Science Division, Agharkar Research Institute (ARI)) ;
  • Chopade, Balu A. (Department of Microbiology, University of Pune)
  • Received : 2010.12.06
  • Accepted : 2011.03.22
  • Published : 2011.06.28

Abstract

A total of 31 Acinetobacter isolates were obtained from the rhizosphere of Pennisetum glaucum and evaluated for their plant-growth-promoting traits. Two isolates, namely Acinetobacter sp. PUCM1007 and A. baumannii PUCM1029, produced indole acetic acid (10-13 ${\mu}g$/ml). A total of 26 and 27 isolates solubilized phosphates and zinc oxide, respectively. Among the mineral-solubilizing strains, A. calcoaceticus PUCM1006 solubilized phosphate most efficiently (84 mg/ml), whereas zinc oxide was solubilized by A. calcoaceticus PUCM1025 at the highest solubilization efficiency of 918%. All the Acinetobacter isolates, except PUCM1010, produced siderophores. The highest siderophore production (85.0 siderophore units) was exhibited by A. calcoaceticus PUCM1016. Strains PUCM1001 and PUCM1019 (both A. calcoaceticus) and PUCM1022 (Acinetobacter sp.) produced both hydroxamate-and catechol-type siderophores, whereas all the other strains only produced catechol-type siderophores. In vitro inhibition of Fusarium oxysporum under iron-limited conditions was demonstrated by the siderophore-producing Acinetobacter strains, where PUCM1018 was the most potent inhibitor of the fungal phytopathogen. Acinetobacter sp. PUCM1022 significantly enhanced the shoot height, root length, and root dry weights of pearl millet seedlings in pot experiments when compared with controls, underscoring the plant-growth-promoting potential of these isolates.

Keywords

References

  1. Alikhani, H. A., N. Saleh Rastin, and H. Antoun. 2007. Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287: 35-41.
  2. Arnow, L. E. 1937. Colorimetric determination of the components of 3,4-dihydroxy phenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-537.
  3. Ashrafuzzaman, M., F. Akhtar Hossen, M. Razi Ismail, Md. Anamul Hoque, M. Zahurul Islam, S. M. Shahidullah, and S. Meon. 2009. Efficiency of plant growth promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr. J. Biotechnol. 8: 1247-1252.
  4. Barbe, V., D. Vallenet, N. Fonknechten, A. Kreimeyer, S. Oztas, L. Labarre, et al. 2004. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res. 32: 5766-5779. https://doi.org/10.1093/nar/gkh910
  5. Bashan, Y. and G. Holguin. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: Biocontrol-PGPB (plant growth promoting bacteria) and PGPB. Soil Biol. Biochem. 30: 1225-1228. https://doi.org/10.1016/S0038-0717(97)00187-9
  6. Bauman, P. 1968. Isolation of Acinetobacter from soil and water. J. Bacteriol. 96: 39-42.
  7. Bhavasar, B. D. and B. A. Chopade. 2003. PGPR research in India, present status and future prospectus: A review, pp. 111- 113. In: Proceedings of Sixth International Workshop on Plant Growth Promoting Rhizobacteria (PGPR). Calicut, Kerala, India.
  8. Chaiharn, M., S. Chunhaleuchanon, A. Kozo, and S. Lumyong. 2008. Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci. Tech. J. 8: 18-23.
  9. Chopade, B. A., S. B. Huddedar, A. M. Shete, J. N. Tilekar, S. D. Gore, and D. D. Dhavale. 2008. Plasmid encoding IAA and method thereof. United States Patent 7341868.
  10. Chun, J., J. H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A Web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  11. Csaky, T. Z. 1948. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2: 450-454. https://doi.org/10.3891/acta.chem.scand.02-0450
  12. Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
  13. Fankem, H., D. Nwaga, A. Deube, L. Dieng, W. Merbach, and F. Xavier Etoa. 2006. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr. J. Biotechnol. 5: 2450-2460.
  14. Gaspar, T., C. Kevers, C. Penel, H. Greppin, D. M. Reid, and T. A. Thorpe. 1996. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol. Plant 32: 272-289. https://doi.org/10.1007/BF02822700
  15. Gadagi, R. S. and T. Sa. 2002. New isolation method for microorganisms solubilizing iron and aluminium phosphates using dyes. Soil Sci. Plant Nutr. 48: 615-618. https://doi.org/10.1080/00380768.2002.10409246
  16. Gerhardt, P., R. G. E. Murry, A. W. Wood, and N. R. Krieg. 1994. In: Methods in General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, USA.
  17. Gulati, A., P. Vyas, P. Rahi, and R. C. Kasana. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr. Microbiol. 58: 371-377. https://doi.org/10.1007/s00284-008-9339-x
  18. Gholami, A., S. Shahsavani, and S. Nezarat. 2009. The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Acad. Sci. Eng. Technol. 49: 19-24.
  19. Hameeda, B., O. P. Rupela, G. Reddy, and K. Satyavani. 2006. Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of pearl millet (Pennisetum glaucum L.). Biol. Fertil. Soils 43: 221-227 https://doi.org/10.1007/s00374-006-0098-1
  20. Holton, J. 1983. A note on preparation and use of a selective differential medium for the isolation of Acinetobacter spp. from clinical sources. J. Appl. Bacteriol. 54: 141-142. https://doi.org/10.1111/j.1365-2672.1983.tb01312.x
  21. Huddedar, S. B., A. M. Shete, J. N. Tilekar, S. D. Gore, D. D. Dhavale, and B. A. Chopade. 2002. Isolation, characterization and plasmid pUPI126 mediated indole 3 acetic acid (IAA) production in Acinetobacter strains from rhizosphere of wheat. Appl. Biochem. Biotechnol. 102: 21-29. https://doi.org/10.1385/ABAB:102-103:1-6:021
  22. Hwangbo, H., R. Dong Park, Y. Woong Kim, Y. Sup Rim, K. Hyung Park, T. Hwan Kim, J. Sun Suh, and K. Yong Kim. 2003. 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47: 87-92. https://doi.org/10.1007/s00284-002-3951-y
  23. Indiragandhi, P. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella. Curr. Microbiol. 56: 327-333. https://doi.org/10.1007/s00284-007-9086-4
  24. Jones, D. L. and P. R. Darrah. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166: 247-257. https://doi.org/10.1007/BF00008338
  25. Juni, E. 1972. Interspecies transformation of Acinetobacter: Genetic evidence for a ubiquitous genus. J. Bacteriol. 112: 917-936.
  26. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
  27. Kumar, N. R., V. T. Arasu, and P. Gunasekaran. 2002. Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescence. Curr. Sci. 82: 1463- 1466.
  28. Kunitsky, C., G. Osterhout, and M. Sasser. 2006. Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock Microbial Identification System, pp. 1-17. In M. J. Miller. (ed.). Encyclopedia of Rapid Microbiological Methods, Vol. 3. DHI Publishing, LLC, River Grove, IL.
  29. Lacava, P. T., M. E. Stenico, and W. L. Araújo. 2008. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. Pauca. Pesq. Agropec. Bras. 43: 521-528. https://doi.org/10.1590/S0100-204X2008000400011
  30. Larry, B., F. Laurent, I. Verdier, J. Winoc Decousser, E. Lecaillon, H. Marchandin, et al. 2010. Accuracy of six commercial systems for identifying clinical Aeromonas isolates. Diag. Microbiol. Infect. Dis. 67: 9-14. https://doi.org/10.1016/j.diagmicrobio.2009.12.012
  31. Lindow, S. E., C. Desurmont, R. Elkins, G. McGourty, E. Clark, and M. T. Brandl. 1998. Occurrence of indole-3-acetic acidproducing bacteria on pear trees and their association with fruit russet. Phytopathology 88: 1149-1157. https://doi.org/10.1094/PHYTO.1998.88.11.1149
  32. Liu, C. H., X. Chen, T. T. Liu, B. Lian, Y. Gu, V. Caer, Y. R. Xue, and B. T. Wang. 2007. Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Appl. Microbiol. Biotechnol. 76: 459-466. https://doi.org/10.1007/s00253-007-1010-0
  33. Machuca, A. and A. M. F. Milagres. 2003. Use of agar CASagar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett. Appl. Microbiol. 36: 177-181. https://doi.org/10.1046/j.1472-765X.2003.01290.x
  34. Neilands, J. B. 1981. Iron absorption and transport in microorganisms. Annu. Rev. Nutr. 1: 27-46. https://doi.org/10.1146/annurev.nu.01.070181.000331
  35. Payne, S. M. 1994. Detection, isolation, and characterization of siderophores. Meth. Enzymol. 235: 329-344.
  36. Peix, A., E. Lang, S. Verbarg, C. Spröer, R. Rivas, I. Santa- Regina, et al. 2009. Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus. Syst. Appl. Microbiol. 32: 334-341. https://doi.org/10.1016/j.syapm.2009.03.004
  37. Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Microbiologiya 17: 362-370.
  38. Raj, N. S., G. Chaluvaraju, K. N. Amruthesh, H. S. Shetty, M. S. Reddy, and J. W. Kloepper. 2003. Induction of growth promotion and resistance against downy mildew on pearl millet (Pennisetum glaucum) by rhizobacteria. Plant Dis. 87: 380-384. https://doi.org/10.1094/PDIS.2003.87.4.380
  39. Raj, N. S., S. A. Deepak, P. Basavaraju, H. S. Shetty, M. S. Reddy, and J. W. Kloepper. 2003. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Protect. 22: 579-588. https://doi.org/10.1016/S0261-2194(02)00222-3
  40. Rajankar, P. N., D. H. Tambekar, and R. Wate. 2007. Study of phosphate solubilization efficiencies of fungi and bacteria isolated from saline belt of Purna river basin. Res. J. Agric. Biol. Sci. 3: 701-703.
  41. Rawlings, D. E. 1995. Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments, pp. 9-17. In C. A. Jerez, T. Vargas, H. Toledo, and J. V. Wiertz (eds.). Biohydrometallurgical Processing. University of Chile Press, Santiago, Chile.
  42. Rustrian, E., J. P. Delgenes, and R. Molettar. 1997. Phosphate release and uptake by pure cultures of Acinetobacter sp.: Effect of the volatile fatty acids concentration. Curr. Microbiol. 34: 43-48. https://doi.org/10.1007/s002849900142
  43. Sachdev, D., P. Nema, P. Dhakephalkar, S. Zinjarde, and B. Chopade. 2010. Assessment of 16S rRNA gene based phylogenetic diversity of Acinetobacter community from the rhizosphere of wheat. Microbiol. Res. 165: 627-638. https://doi.org/10.1016/j.micres.2009.12.002
  44. Sachdev, D. P. 2009. Molecular phylogenetics of Acinetobacter species from the rhizosphere of wheat varieties and plant growth promoting properties of Acinetobacter rhizobacteria. Ph.D. Thesis. University of Pune, Maharashtra, India.
  45. Saha, S. C. and B. A. Chopade. 2002. Effect of food preservatives on Acinetobacter genospecies isolated from meat. J. Food Sci. Technol. 39: 26-32.
  46. Sarode, P. D., M. R. Rane, B. L. Chaudhari, and S. B. Chincholkar. 2009. Siderophoregenic Acinetobacter calcoaceticus isolated from wheat rhizosphere with strong PGPR activity. Malaysian J. Microbiol. 5: 6-12.
  47. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  48. Suresh, A., P. Pallavi, P. Srinivas, V. Praveen Kumar, S. Jeevan Chandra, and S. Ram Reddy. 2010. Plant growth promoting activities of fluorescent Pseudomonas associated with some crop plants. Afr. J. Microbiol. Res. 4: 1491-1494.
  49. Teixeira, D. A., A. C. Alfenas, R. G. Mafia, E. M. Ferreira, L. D. Siqueira, L. A. Maffia, and A. H. Mounteer. 2007. Rhizobacterial promotion of eucalypt rooting and growth. Environ. Microbiol. 38: 111-123.
  50. Toro, M., R. Azcon, and J. M. Barea. 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (sup32) P and nutrient cycling. Appl. Environ. Microbiol. 63: 4408-4412.
  51. Towner, K. J. and B. A. Chopade. 1987. Biotyping of Acinetobacter calcoaceticus using API 20 NE system. J. Hosp. Infect. 10: 145-151. https://doi.org/10.1016/0195-6701(87)90140-X
  52. Vaneechoutte, M. and T. De Baere. 2008. Taxonomy of genus Acinetobacter based on 16S rRNA gene sequences, pp. 35-60. In U. Gerischer (ed.). Acinetobacter Molecular Microbiology. Caister Academic Press, UK.
  53. Wani, P. A., M. S. Khan, and A. Zaidi. 2007. Chromium reduction, plant growth-promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr. Microbiol. 54: 237-243. https://doi.org/10.1007/s00284-006-0451-5
  54. Xiao, X., X. Yin, J. Lin, L. Sun, Z. You, P. Wang, and F. Wang. 2005. Chitinase genes in lake sediments of Ardley Island, Antarctica. Appl. Environ. Microbiol. 71: 7904-7909. https://doi.org/10.1128/AEM.71.12.7904-7909.2005
  55. Xu, H. X., Y. Kawamura, N. Li, L. Zhao, T. M. Li, Z. Y. Li, S. Shu, and T. Ezaki. 2000. A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube. Int. J. Syst. Evol. Microbiol. 50: 1463-1469. https://doi.org/10.1099/00207713-50-4-1463
  56. Xue, Q. Y., Y. Chen, S. M. Li, L. Chen, G. C. Ding, D. W. Guo, and J. H. Guo. 2008. Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biocontrol 48: 252-258.
  57. Yang, T., D. M. Law, and P. J. Davies. 1993. Magnitude and kinetics of stem elongation induced by exogenous indole-3-acetic acid in intact light grown pea seedling. Plant Physiol. 102: 717-724. https://doi.org/10.1104/pp.102.3.717
  58. Yavankar, S. P., K. R. Pardesi, and B. A. Chopade. 2007. Species distribution and physiological characterization of Acinetobacter genospecies isolated from healthy human skin of tribal population in India. Indian J. Med. Microbiol. 25: 336-345. https://doi.org/10.4103/0255-0857.37335

Cited by

  1. Rhizobium Promotes Non-Legumes Growth and Quality in Several Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy for Humans vol.7, pp.5, 2012, https://doi.org/10.1371/journal.pone.0038122
  2. Nutritional immunity: transition metals at the pathogen??host interface vol.10, pp.8, 2011, https://doi.org/10.1038/nrmicro2836
  3. Genomic and Functional Analysis of the Type VI Secretion System in Acinetobacter vol.8, pp.1, 2011, https://doi.org/10.1371/journal.pone.0055142
  4. Characterization and Fungal Inhibition Activity of Siderophore from Wheat Rhizosphere Associated Acinetobacter calcoaceticus Strain HIRFA32 vol.54, pp.3, 2011, https://doi.org/10.1007/s12088-014-0446-z
  5. Ecological Succession and Stochastic Variation in the Assembly of Arabidopsis thaliana Phyllosphere Communities vol.5, pp.1, 2014, https://doi.org/10.1128/mbio.00682-13
  6. Rhizosphere: its structure, bacterial diversity and significance vol.13, pp.1, 2014, https://doi.org/10.1007/s11157-013-9317-z
  7. Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant vol.50, pp.4, 2014, https://doi.org/10.7845/kjm.2014.4050
  8. Selection on soil microbiomes reveals reproducible impacts on plant function vol.9, pp.4, 2011, https://doi.org/10.1038/ismej.2014.196
  9. Genetic Diversity of Namibian Pennisetum glaucum (L.) R. BR. (Pearl Millet) Landraces Analyzed by SSR and Morphological Markers vol.2016, pp.None, 2011, https://doi.org/10.1155/2016/1439739
  10. Nanoparticles for Control of Biofilms of Acinetobacter Species vol.9, pp.5, 2016, https://doi.org/10.3390/ma9050383
  11. The use of Sprout as Precursor for the Production of Indole Acetic Acid by Selected Plant Growth Promoting Rhizobacteria Grown in the Fermentor vol.10, pp.4, 2011, https://doi.org/10.5454/mi.10.4.3
  12. Diversity of bacteria and archaea in the rhizosphere of bioenergy crop Jatropha curcas vol.6, pp.2, 2011, https://doi.org/10.1007/s13205-016-0546-z
  13. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells vol.12, pp.None, 2011, https://doi.org/10.2147/ijn.s139212
  14. A Community-Based Culture Collection for Targeting Novel Plant Growth-Promoting Bacteria from the Sugarcane Microbiome vol.8, pp.None, 2017, https://doi.org/10.3389/fpls.2017.02191
  15. High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits vol.7, pp.5, 2011, https://doi.org/10.1007/s13205-017-0937-9
  16. Lignin peroxidase mediated silver nanoparticle synthesis in Acinetobacter sp. vol.7, pp.1, 2011, https://doi.org/10.1186/s13568-017-0528-5
  17. Caracterización y efecto de Azotobacter, Azospirillum y Pseudomonas asociadas a Ipomoea Batatas del Caribe Colombiano vol.19, pp.2, 2011, https://doi.org/10.15446/rev.colomb.biote.v19n2.69471
  18. Molecular characterization of a proteolytic bacterium in Panchagavya : An organic fertilizer mixture vol.9, pp.2, 2011, https://doi.org/10.1016/j.jaim.2017.04.007
  19. Bacterial communities in the rhizosphere of Phragmites australis from an oil-polluted wetland vol.64, pp.3, 2011, https://doi.org/10.1080/03650340.2017.1352087
  20. Boosting Alfalfa ( Medicago sativa L.) Production With Rhizobacteria From Various Plants in Saudi Arabia vol.9, pp.None, 2011, https://doi.org/10.3389/fmicb.2018.00477
  21. Identification of Soil Bacterial Isolates Suppressing Different Phytophthora spp. and Promoting Plant Growth vol.9, pp.None, 2011, https://doi.org/10.3389/fpls.2018.01502
  22. Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.) vol.84, pp.1, 2011, https://doi.org/10.1128/aem.01715-17
  23. Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture vol.1, pp.1, 2011, https://doi.org/10.1007/s42398-018-0011-5
  24. Effect of management of organic wastes on inactivation of Brassica nigra and Fusarium oxysporum f.sp. lactucae using soil biosolarization vol.74, pp.8, 2011, https://doi.org/10.1002/ps.4891
  25. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration vol.9, pp.4, 2011, https://doi.org/10.1002/ece3.4743
  26. Engineering root microbiomes for healthier crops and soils using beneficial, environmentally safe bacteria vol.65, pp.2, 2019, https://doi.org/10.1139/cjm-2018-0315
  27. Bacteria with natural chemotaxis towards methanol revealed by chemotaxis fishing technique vol.83, pp.11, 2011, https://doi.org/10.1080/09168451.2019.1637715
  28. Identification and Control of Latent Bacteria in in vitro Cultures of Sweetpotato [ Ipomoea batatas (L.) Lam] vol.11, pp.None, 2011, https://doi.org/10.3389/fpls.2020.00903
  29. The aeroponic rhizosphere microbiome: community dynamics in early succession suggest strong selectional forces vol.113, pp.1, 2011, https://doi.org/10.1007/s10482-019-01319-y
  30. Modulation of PQQ-dependent glucose dehydrogenase (mGDH and sGDH) activity by succinate in phosphate solubilizing plant growth promoting Acinetobacter sp. SK2 vol.10, pp.1, 2011, https://doi.org/10.1007/s13205-019-1991-2
  31. Arsenic Remediation in Bangladeshi Rice Varieties with Enhance Plant Growth by Unique Arsenic-Resistant Bacterial Isolates vol.37, pp.2, 2011, https://doi.org/10.1080/01490451.2019.1666938
  32. Biocontrol of Rice Seedling Rot Disease Caused by Curvularia lunata and Helminthosporium oryzae by Epiphytic Yeasts from Plant Leaves vol.8, pp.5, 2020, https://doi.org/10.3390/microorganisms8050647
  33. In vivo removal of profenofos in agricultural soil and plant growth promoting activity on Vigna radiata by efficient bacterial formulation vol.22, pp.6, 2011, https://doi.org/10.1080/15226514.2019.1696743
  34. Effect of Bacterial and Fungal Microbiota Removal on the Survival and Development of Bryophagous Beetles vol.49, pp.4, 2020, https://doi.org/10.1093/ee/nvaa060
  35. The interaction between Rhizoglomus irregulare and hyphae attached phosphate solubilizing bacteria increases plant biomass of Solanum lycopersicum vol.240, pp.None, 2011, https://doi.org/10.1016/j.micres.2020.126556
  36. Multifunctional characteristics of Acinetobacter lwoffii Bac109 for growth promotion and colonization in micropropagated sugarcane vol.51, pp.None, 2021, https://doi.org/10.1590/1983-40632021v5169373
  37. Aspergillus Flavus reprogrammed morphological and chemical attributes of Solanum lycopersicum through SlGSH1 and SlPCS1 genes modulation under heavy metal stress vol.16, pp.1, 2011, https://doi.org/10.1080/17429145.2021.1903105
  38. Plant Growth Stimulation by Microbial Consortia vol.11, pp.2, 2011, https://doi.org/10.3390/agronomy11020219
  39. Cultivating the Bacterial Microbiota of Populus Roots vol.6, pp.3, 2021, https://doi.org/10.1128/msystems.01306-20
  40. Indicative bacterial communities and taxa of disease-suppressing and growth-promoting composts and their associations to the rhizoplane vol.97, pp.10, 2011, https://doi.org/10.1093/femsec/fiab134
  41. The endophytic microbiota of Citrus limon is transmitted from seed to shoot highlighting differences of bacterial and fungal community structures vol.11, pp.1, 2011, https://doi.org/10.1038/s41598-021-86399-5
  42. A comprehensive synthesis unveils the mysteries of phosphate‐solubilizing microbes vol.96, pp.6, 2011, https://doi.org/10.1111/brv.12779
  43. Phytohormones Producing Acinetobacter bouvetii P1 Mitigates Chromate Stress in Sunflower by Provoking Host Antioxidant Response vol.10, pp.12, 2021, https://doi.org/10.3390/antiox10121868
  44. Comparative assessment of chromate bioremediation potential of Pantoea conspicua and Aspergillus niger vol.424, pp.no.pa, 2022, https://doi.org/10.1016/j.jhazmat.2021.127314