DOI QR코드

DOI QR Code

High Molecular Weight Poly-Gamma-Glutamic Acid Regulates Lipid Metabolism in Rats Fed a High-Fat Diet and Humans

  • 투고 : 2011.04.28
  • 심사 : 2011.05.25
  • 발행 : 2011.07.28

초록

We investigated the effect of high molecular weight polygamma- glutamic acid (hm ${\gamma}$-PGA) on adiposity and lipid metabolism of rats in the presence of an obesity-inducing diet. Thirty-two Sprague-Dawley rats were fed either a normal-fat (11.4% kcal fat, NFC) or high-fat (51% kcal fat, HFC) diet. After 5 weeks, half of each diet-fed group was treated with hm ${\gamma}$-PGA (NFP or HFP) for 4 weeks. The HFC group had significantly higher body weight, visceral fat mass, fasting serum levels of total cholesterol, LDL cholesterol, and leptin, and lower serum HDL cholesterol level compared with those of the NFC group (p < 0.05). Treatment with hm ${\gamma}$-PGA decreased body weight gain and perirenal fat mass (p<0.05), fasting serum total cholesterol, and mRNA expression of glucose-6- phosphate dehydrogenase (G6PD), regardless of dietary fat contents (p < 0.01). However, hm ${\gamma}$-PGA increased serum HDL cholesterol in the HFC group (p < 0.05). In vitro, 3-hydroxy-3-methylglutaryl coenzyme-A (HMGCoA) reductase activity was suppressed by the addition of hm ${\gamma}$-PGA. In agreement with observations in animal study, the supplementation of hm ${\gamma}$-PGA (150 mg/day) to 20 female subjects in an 8-week double-blind, placebocontrolled study resulted in a tendency to decrease total cholesterol and LDL cholesterol concentrations. We thus conclude that dietary supplementation of hm ${\gamma}$-PGA may act as a hypocholestrolemic agent, secondary to its inhibitor effect on HMG-CoA reductase, and decrease abdominal adiposity by decreasing hepatic lipogenesis. The present study is an important first step in establishing the effect of hm ${\gamma}$-PGA on cholesterol levels in rats and humans.

키워드

참고문헌

  1. Ali, A., M. Velasquez, C. Hansen, A. Mohamed, and S. Bhathena. 2004. Effects of soybean isoflavones, probiotics, and their interactions on lipid metabolism and endocrine system in an animal model of obesity and diabetes. J. Nutr. Biochem. 15: 583-590. https://doi.org/10.1016/j.jnutbio.2004.04.005
  2. Back, H., S. Kim, J. Yang, M. Kim, S. Chae, and Y. Cha. 2011. Effects of chungkookjang supplementation on obesity and atherosclerotic indices in overweight/obese subjects: A 12-week, randomized, double-blind, placebo-controlled clinical trial. J. Med. Food. 14: 532-537. https://doi.org/10.1089/jmf.2010.1199
  3. Banz, W., J. Davis, R. Peterson, and M. Iqbal. 2004. Gene expression and adiposity are modified by soy protein in male Zucker diabetic fatty rats. Obesity 12: 1907-1913. https://doi.org/10.1038/oby.2004.238
  4. Bergmeyer, H., E. Bernt, F. Schmidt, and H. Stork. 1974. DGlucose determination with hexokinase and glucose-6-phosphate dehydrogenase. Methods Enz. Anal. 3: 1196-1198.
  5. Bligh, E. G. and W. J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/o59-099
  6. Carroll, K. K. and E. M. Kurowska. 1995. Soy consumption and cholesterol reduction: Review of animal and human studies. J. Nutr. 125(3 Suppl): 594S-597S.
  7. Casscells, W., M. Naghavi, and J. T. Willerson. 2003. Vulnerable atherosclerotic plaque: A multifocal disease. Circulation 107: 2072-2075. https://doi.org/10.1161/01.CIR.0000069329.70061.68
  8. Chen, H. C. and R. V. Farese. 2002. Determination of adipocyte size by computer image analysis. J. Lipid Res. 43: 986-989.
  9. Chien, H. L., H. Y. Huang, and C. C. Chou. 2006. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 772-778. https://doi.org/10.1016/j.fm.2006.01.002
  10. Dupont, J. 1965. Relationship between utilization of fat and synthesis of cholesterol and total lipid in young female rats. J. Am. Oil Chem. Soc. 42: 903-907. https://doi.org/10.1007/BF02632442
  11. Frankel, E., J. German, J. Kinsella, E. Parks, and J. Kanner. 1993. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 341: 454-457. https://doi.org/10.1016/0140-6736(93)90206-V
  12. Fungwe, T., J. Fox, L. Cagen, H. Wilcox, and M. Heimberg. 1994. Stimulation of fatty acid biosynthesis by dietary cholesterol and of cholesterol synthesis by dietary fatty acid. J. Lipid Res. 35: 311-318.
  13. Fungwe, T. V., L. M. Cagen, G. A. Cook, H. G. Wilcox, and M. Heimberg. 1993. Dietary cholesterol stimulates hepatic biosynthesis of triglyceride and reduces oxidation of fatty acids in the rat. J. Lipid Res. 34: 933-941.
  14. Hirunpanich, V., A. Utaipat, N. P. Morales, N. Bunyapraphatsara, H. Sato, A. Herunsale, and C. Suthisisang. 2006. Hypocholesterolemic and antioxidant effects of aqueous extracts from the dried calyx of Hibiscus sabdariffa L. in hypercholesterolemic rats. J. Ethnopharmacol. 103: 252-260. https://doi.org/10.1016/j.jep.2005.08.033
  15. Isomaa, B. 2003. A major health hazard: The metabolic syndrome. Life Sci. 73: 2395-2411. https://doi.org/10.1016/S0024-3205(03)00646-5
  16. Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada. 1996. Glutamic acid independent production of poly (γ-glutamic acid) by Bacillus subtilis TAM-4. Biosci. Biotechnol. Biochem. 60: 1239-1242. https://doi.org/10.1271/bbb.60.1239
  17. Iwai, K., N. Nakaya, Y. Kawasaki, and H. Matsue. 2002. Antioxidative functions of natto, a kind of fermented soybeans: Effect on LDL oxidation and lipid metabolism in cholesterolfed rats. J. Agric. Food Chem. 50: 3597-3601. https://doi.org/10.1021/jf0117199
  18. Jang, C. H., J. K. Lim, J. H. Kim, C. S. Park, D. Y. Kwon, Y. S. Kim, D. H. Shin, and J. S. Kim. 2006. Change of isoflavone content during manufacturing of cheonggukjang, a traditional Korean fermented soyfood. Food Sci. Biotechnol. 15: 643-646.
  19. Kawada, T., K. Hagihara, and K. Iwai. 1986. Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J. Nutr. 116: 1272-1278. https://doi.org/10.1093/jn/116.7.1272
  20. Kim, S., I. Sohn, and Y. S. Lee. 2005. Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J. Nutr. 135: 33-41. https://doi.org/10.1093/jn/135.1.33
  21. Kim, T. W., T. Y. Lee, H. C. Bae, J. H. Hahm, Y. H. Kim, C. Park, et al. 2007. Oral administration of high molecular mass poly-γ-glutamate induces NK cell-mediated antitumor immunity. J. Immunol. 179: 775-780. https://doi.org/10.4049/jimmunol.179.2.775
  22. Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from chungkook-Jang. Appl. Environ. Microbiol. 62: 2482-2488.
  23. Kubota, N., Y. Terauchi, H. Miki, H. Tamemoto, T. Yamauchi, K. Komeda, et al. 1999. PPAR [gamma] mediates high-fat dietinduced adipocyte hypertrophy and insulin resistance. Molec. Cell 4: 597-609. https://doi.org/10.1016/S1097-2765(00)80210-5
  24. Kwak, C., M. Lee, and S. Park. 2007. Higher antioxidant properties of chungkookjang, a fermented soybean paste, may be due to increased aglycone and malonylglycoside isoflavone during fermentation. Nutr. Res. 27: 719-727. https://doi.org/10.1016/j.nutres.2007.09.004
  25. Kwon, D. Y., J. S. Jang, J. E. Lee, Y. S. Kim, D. H. Shin, and S. Park. 2006. The isoflavonoid aglycone-rich fractions of chungkookjang, fermented unsalted soybeans, enhance insulin signaling and peroxisome proliferator-activated receptor-gamma activity in vitro. Biofactors 26: 245-258. https://doi.org/10.1002/biof.5520260403
  26. Kwon, D. Y., J. S. Jang, S. M. Hong, J. E. Lee, S. R. Sung, H. R. Park, and S. Park. 2007. Long-term consumption of fermented soybean-derived chungkookjang enhances insulinotropic action unlike soybeans in 90% pancreatectomized diabetic rats. Eur. J. Nutr. 46: 44-52. https://doi.org/10.1007/s00394-006-0630-y
  27. Lee, B. Y., D. M. Kim, and K. H. Kim. 1991. Physico-chemical properties of viscous substance extracted from chungkookjang. Kor. J. Food Sci. Technol. 23: 599-604.
  28. Lemonnier, D., R. Aubert, J. Suquet, and G. Rosselin. 1974. Metabolism of genetically obese rats on normal or high-fat diet. Diabetologia 10: 697-701. https://doi.org/10.1007/BF01222007
  29. Mezei, O., W. Banz, R. Steger, M. Peluso, T. Winters, and N. Shay. 2003. Soy isoflavones exert antidiabetic and hypolipidemic effects through the PPAR pathways in obese Zucker rats and murine RAW 264.7 cells. J. Nutr. 133: 1238-1243. https://doi.org/10.1093/jn/133.5.1238
  30. Mori, M., T. Aizawa, M. Tokoro, T. Miki, and Y. Yamori. 2004. Soy isoflavone tablets reduce osteoporosis risk factors and obesity in middle aged Japanese women. Clin. Exp. Pharmacol. Physiol. 31: S39-S41. https://doi.org/10.1111/j.1440-1681.2004.04117.x
  31. Munilla, M. and E. Herrera. 1997. A cholesterol-rich diet causes a greater hypercholesterolemic response in pregnant than in nonpregnant rats and does not modify fetal lipoprotein profile. J. Nutr. 127: 2239-2245. https://doi.org/10.1093/jn/127.11.2239
  32. Naderali, E., S. Fatani, and G. Williams. 2004. Fenofibrate lowers adiposity and corrects metabolic abnormalities, but only partially restores endothelial function in dietary obese rats. Atherosclerosis 177: 307-312. https://doi.org/10.1016/j.atherosclerosis.2004.07.029
  33. Okamoto, A., H. Hanagata, Y. Kawamura, and F. Yanagida. 1995. Anti-hypertensive substances in fermented soybean, natto. Plant Foods Hum. Nutr. 47: 39-47. https://doi.org/10.1007/BF01088165
  34. Park, C., J. Choi, Y. Choi, H. Nakamura, K. Shimanouchi, T. Horiuchi, et al. 2005. Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang. J. Mol. Catal. B Enz. 35: 128-133. https://doi.org/10.1016/j.molcatb.2005.06.007
  35. Serougne, C., J. Ferezou, and A. Rukaj. 1987. A new relationship between cholesterolemia and cholesterol synthesis determined in rats fed an excess of cystine. Biochim. Biophys. Acta 921: 522- 530. https://doi.org/10.1016/0005-2760(87)90080-4
  36. Shin, S., J. Kwon, Y. Jeong, S. Jeon, J. Choi, and M. Choi. 2011. Supplementation of cheonggukjang and red ginseng cheonggukjang can improve plasma lipid profile and fasting blood glucose concentration in subjects with impaired fasting glucose. J. Med. Food 14: 108-113. https://doi.org/10.1089/jmf.2009.1366
  37. Staels, B., J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, and J. Fruchart. 1998. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 98: 2088-2093. https://doi.org/10.1161/01.CIR.98.19.2088
  38. Sung, M., C. Park, C. Kim, H. Poo, K. Soda, and M. Ashiuchi. 2005. Natural and edible biopolymer poly-γ-glutamic acid: Synthesis, production, and applications. Chem. Rec. 5: 352- 366. https://doi.org/10.1002/tcr.20061
  39. Yang, J. Y., S. H. Lee, and Y. S. Song. 2003. Improving effect of powders of cooked soybean and chongkukjang on blood pressure and lipid metabolism in spontaneously hypertensive rats. J. Kor. Soc. Food Sci. Nutr. 32: 899-905. https://doi.org/10.3746/jkfn.2003.32.6.899
  40. Yao, H. T., S. Y. Huang, and M. T. Chiang. 2008. A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 46: 1525-1534. https://doi.org/10.1016/j.fct.2007.12.012
  41. Zor, T. and Z. Selinger. 1996. Linearization of the Bradford protein assay increases its sensitivity: Theoretical and experimental studies. Anal. Biochem. 236: 302-308. https://doi.org/10.1006/abio.1996.0171

피인용 문헌

  1. Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers vol.22, pp.12, 2011, https://doi.org/10.4014/jmb.1208.08031
  2. High-Molecular-Weight Poly-Gamma-Glutamate Protects Against Hypertriglyceridemic Effects of a High-Fructose Diet in Rat vol.23, pp.6, 2011, https://doi.org/10.4014/jmb.1211.11059
  3. Effect of Green Tea Extract/Poly-γ-Glutamic Acid Complex in Obese Type 2 Diabetic Mice vol.37, pp.3, 2013, https://doi.org/10.4093/dmj.2013.37.3.196
  4. Cheonggukjang , a soybean paste fermented with B. licheniformis -67 prevents weight gain and improves glycemic control in high fat diet induced obese mice vol.59, pp.1, 2011, https://doi.org/10.3164/jcbn.15-30
  5. Baseline dietary glutamic acid intake and the risk of colorectal cancer: The Rotterdam study vol.122, pp.6, 2016, https://doi.org/10.1002/cncr.29862
  6. Effects of poly-gamma-glutamic acid on inflammatory and metabolic biomarkers in sleep-restricted rats vol.16, pp.4, 2011, https://doi.org/10.1007/s41105-018-0170-x
  7. Effects of γ-Polyglutamic Acid on the Cecal Microbiota and Visceral Fat in KK-Ay/TaJcl Male Mice vol.24, pp.1, 2018, https://doi.org/10.3136/fstr.24.151
  8. Complete Nucleotide Sequence Analysis of a Novel Bacillus subtilis -Infecting Bacteriophage BSP10 and Its Effect on Poly-Gamma-Glutamic Acid Degradation vol.10, pp.5, 2018, https://doi.org/10.3390/v10050240
  9. Comparative Genome Assessment of the Two Novel Poly-γ-Glutamic Acid Producing Bacillus Strains vol.13, pp.2, 2019, https://doi.org/10.22207/jpam.13.2.03
  10. Effects of γ-Polyglutamic Acid on Blood Glucose and Caecal Short Chain Fatty Acids in Adult Male Mice vol.11, pp.1, 2011, https://doi.org/10.4236/fns.2020.111002
  11. Effects of a high-γ-polyglutamic acid-containing natto diet on liver lipids and cecal microbiota of adult female mice vol.40, pp.4, 2011, https://doi.org/10.12938/bmfh.2020-061