DOI QR코드

DOI QR Code

Homologous Expression and Quantitative Analysis of T3SS-Dependent Secretion of TAP-Tagged XoAvrBs2 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract

  • Kim, S.H. (Department of Advanced Technology Fusion, Konkuk University) ;
  • Lee, S.E. (Monsanto Korea, Inc., Vegetable Seeds Division) ;
  • Hong, M.K. (Department of Advanced Technology Fusion, Konkuk University) ;
  • Song, N.H. (Department of Green Life Science, College of Convergence, Sangmyung University) ;
  • Yoon, B. (Department of Life Science, College of Natural Science, Kyonggi University) ;
  • Viet, P.T. (Department of Advanced Technology Fusion, Konkuk University) ;
  • Ahn, Y.J. (Department of Life Science, College of Natural Science, Kyonggi University) ;
  • Lee, B.M. (Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Jung, J.W. (Department of Molecular Biotechnology, Konkuk University) ;
  • Kim, K.P. (Department of Molecular Biotechnology, Konkuk University) ;
  • Han, Y.S. (Department of Advanced Technology Fusion, Konkuk University) ;
  • Kim, J.G. (Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Kang, L.W. (Department of Advanced Technology Fusion, Konkuk University)
  • Received : 2011.02.09
  • Accepted : 2011.04.06
  • Published : 2011.07.28

Abstract

Xanthomonas oryzae pv. oryzae (Xoo) produces a putative effector, XoAvrBs2. We expressed XoAvrBs2 homologously in Xoo with a TAP-tag at the C-terminus to enable quantitative analysis of protein expression and secretion. Addition of rice leaf extracts from both Xoo-sensitive and Xoo-resistant rice cultivars to the Xoo cells induced expression of the XoAvrBs2 gene at the transcriptional and translational levels, and also stimulated a remarkable amount of XoAvrBs2 secretion into the medium. In a T3SS-defective Xoo mutant strain, secretion of the TAPtagged XoAvrBs2 was blocked. Thus, we elucidated the transcriptional and translational expressions of the XoAvrBs2 gene in Xoo was induced in vitro by the interaction with rice and the induced secretion of XoAvrBs2 was T3SSdependent. It is the first report to measure the homologous expression and secretion of XoAvrBs2 in vitro by rice leaf extract. Our system for the quantitative analysis of effector protein expression and secretion could be generally used for the study of host-pathogen interactions.

Keywords

References

  1. Bai, J., S. H. Choi, G. Ponciano, H. Leung, and J. E. Leach. 2000. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol. Plant Microbe Interact. 13: 1322-1329. https://doi.org/10.1094/MPMI.2000.13.12.1322
  2. Casper-Lindley, C., D. Dahlbeck, E. T. Clark, and B. J. Staskawicz. 2002. Direct biochemical evidence for type III secretiondependent translocation of the AvrBs2 effector protein into plant cells. Proc. Natl. Acad. Sci. USA 99: 8336-8341. https://doi.org/10.1073/pnas.122220299
  3. Cho, H. J., Y. J. Park, T. H. Noh, Y. T. Kim, J. G. Kim, E. S. Song, D. H. Lee, and B. M. Lee. 2008. Molecular analysis of the hrp gene cluster in Xanthomonas oryzae pathovar oryzae KACC10859. Microb. Pathog. 44: 473-483. https://doi.org/10.1016/j.micpath.2007.12.002
  4. Cornelis, G. R. and F. Van Gijsegem. 2000. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54: 735-774. https://doi.org/10.1146/annurev.micro.54.1.735
  5. Galan, J. E. and A. Collmer. 1999. Type III secretion machines: Bacterial devices for protein delivery into host cells. Science 284: 1322-1328. https://doi.org/10.1126/science.284.5418.1322
  6. He, S. Y., K. Nomura, and T. S. Whittam. 2004. Type III protein secretion mechanism in mammalian and plant pathogens. Biochim. Biophys. Acta 1694: 181-206. https://doi.org/10.1016/j.bbamcr.2004.03.011
  7. Hu, J., W. Qian, and C. He. 2007. The Xanthomonas oryzae pv. oryzae eglXoB endoglucanase gene is required for virulence to rice. FEMS Microbiol. Lett. 269: 273-279. https://doi.org/10.1111/j.1574-6968.2007.00638.x
  8. Kearney, B. and B. J. Staskawicz. 1990. Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346: 385-386. https://doi.org/10.1038/346385a0
  9. Lee, B. M., Y. J. Park, D. S. Park, H. W. Kang, J. G. Kim, E. S. Song, et al. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 33: 577-586. https://doi.org/10.1093/nar/gki206
  10. Ogawa, T., T. Yamamoto, G. S. Khush, and T. W. Mew. 1991. Breeding of near-isogenic lines of rice with single genes for resistance to bacterial blight pathogen (Xanthomonas campestris pv. oryzae). Japan J. Breed. 41: 523-529. https://doi.org/10.1270/jsbbs1951.41.523
  11. Puig, O., F. Caspary, G. Rigaut, B. Rutz, E. Bouveret, E. Bragado-Nilsson, M. Wilm, and B. Seraphin. 2001. The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 24: 218-229. https://doi.org/10.1006/meth.2001.1183
  12. Roden, J. A., B. Belt, J. B. Ross, T. Tachibana, J. Vargas, and M. B. Mudgett. 2004. A genetic screen to isolate type III effectors translocated into pepper cells during Xanthomonas infection. Proc. Natl. Acad. Sci. USA 101: 16624-16629. https://doi.org/10.1073/pnas.0407383101
  13. Ryder, M. H., M. E. Tate, and G. P. Jones. 1984. Agrocinopine A, a tumor-inducing plasmid-coded enzyme product, is a phosphodiester of sucrose and L-arabinose. J. Biol. Chem. 259: 9704-9710.
  14. Schornack, S., A. Meyer, P. Romer, T. Jordan, and T. Lahaye. 2006. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J. Plant Physiol. 163: 256-272. https://doi.org/10.1016/j.jplph.2005.12.001
  15. Seo, H. S. 2003. Characterization of Weedy Rice Germplasm, pp. 254-260. Korean National Research Foundation.
  16. Sun, Q., W. Wu, W. Qian, J. Hu, R. Fang, and C. He. 2003. High-quality mutant libraries of Xanthomonas oryzae pv. oryzae and X. campestris pv. campestris generated by an efficient transposon mutagenesis system. FEMS Microbiol. Lett. 226: 145-150. https://doi.org/10.1016/S0378-1097(03)00583-4
  17. Swords, K. M., D. Dahlbeck, B. Kearney, M. Roy, and B. J. Staskawicz. 1996. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J. Bacteriol. 178: 4661-4669. https://doi.org/10.1128/jb.178.15.4661-4669.1996
  18. Tai, T. H., D. Dahlbeck, E. T. Clark, P. Gajiwala, R. Pasion, M. C. Whalen, R. E. Stall, and B. J. Staskawicz. 1999. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153-14158. https://doi.org/10.1073/pnas.96.24.14153
  19. Tsuge, S., S. Terashima, A. Furutani, H. Ochiai, T. Oku, K. Tsuno, H. Kaku, and Y. Kubo. 2005. Effects on promoter activity of base substitutions in the cis-acting regulatory element of HrpXo regulons in Xanthomonas oryzae pv. oryzae. J. Bacteriol. 187: 2308-2314. https://doi.org/10.1128/JB.187.7.2308-2314.2005
  20. Yasbin, R. E., G. A. Wilson, and F. E. Young. 1975. Transformation and transfection in lysogenic strains of Bacillus subtilis: Evidence for selective induction of prophage in competent cells. J. Bacteriol. 121: 296-304.
  21. Zhu, W., B. Yang, J. M. Chittoor, L. B. Johnson, and F. F. White. 1998. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol. Plant Microbe Interact. 11: 824-832. https://doi.org/10.1094/MPMI.1998.11.8.824

Cited by

  1. Crystal structure of XoLAP, a leucine aminopeptidase, from Xanthomonas oryzae pv. oryzae vol.51, pp.5, 2011, https://doi.org/10.1007/s12275-013-3234-2
  2. Homologous Expression and T3SS-Dependent Secretion of TAP-Tagged Xo2276 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract and Its Direct In Vitro Recognition of Putative Target DNA Sequenc vol.23, pp.1, 2011, https://doi.org/10.4014/jmb.1207.07039
  3. Crystallization and preliminary X‐ray crystallographic analysis of the XoGroEL chaperonin from Xanthomonas oryzae pv. oryzae vol.70, pp.5, 2014, https://doi.org/10.1107/s2053230x14006591
  4. A protein expression system for tandem affinity purification in Xanthomonas citri subsp. citri vol.47, pp.2, 2016, https://doi.org/10.1016/j.bjm.2016.01.026
  5. Crystal Structures of Peptide Deformylase from Rice Pathogen Xanthomonas oryzae pv. oryzae in Complex with Substrate Peptides, Actinonin, and Fragment Chemical Compounds vol.64, pp.39, 2011, https://doi.org/10.1021/acs.jafc.6b02976
  6. Time-resolved pathogenic gene expression analysis of the plant pathogen Xanthomonas oryzae pv. oryzae vol.17, pp.None, 2016, https://doi.org/10.1186/s12864-016-2657-7
  7. Transcriptional expression of aminoacyl tRNA synthetase genes of Xanthomonas oryzae pv. oryzae (Xoo) on rice-leaf extract treatment and crystal structure of Xoo glutamyl-tRNA synthetase vol.68, pp.5, 2017, https://doi.org/10.1071/cp16435