참고문헌
- Arunachalam, K. D. 1999. Role of bifidobacteria in nutrition, medicine and technology. Nutr. Res. 19: 1559-1597. https://doi.org/10.1016/S0271-5317(99)00112-8
- Begley, M., C. Hill, and C. G. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
- Begley, M., C. Hill, and C. G. Gahan. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
- Berr, F., G. A. Kullak-Ublick, G. Paumgartner, W. Munzing, and P. B. Hylemon. 1996. 7 Alpha-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology 111: 1611-1620. https://doi.org/10.1016/S0016-5085(96)70024-0
- Bielecka, M., E. Biedrzycka, and A. Majkowska. 2002. Selection of probiotics and prebiotics for synbiotics and confirmation of their in vivo effectiveness. Food Res. Int. 35: 125-131. https://doi.org/10.1016/S0963-9969(01)00173-9
- Chiang, B. L., Y. H. Sheih, L. H. Wang, C. K. Liao, and H. S. Gill. 2000. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): Optimization and definition of cellular immune responses. Eur. J. Clin. Nutr. 54: 849-855. https://doi.org/10.1038/sj.ejcn.1601093
- Dashkevicz, M. P. and S. D. Feighner. 1989. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Appl. Environ. Microbiol. 55: 11-16.
- Du Toit, M., C. M. Franz, L. M. Dicks, U. Schillinger, P. Harberer, B. Warlies, F. Ahrens, and W. H. Holzapfel. 1998. Characterization and selection of probiotic lactobacilli for a preliminary mini-pig feeding trial and their effect on serum cholesterol levels, feces pH, and feces moisture content. Int. J. Food Microbiol. 40: 93-104. https://doi.org/10.1016/S0168-1605(98)00024-5
- Felis, G. E. and F. Dellaglio. 2007. Taxonomy of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 8: 44-61.
- Grill, J. P., C. Cayuela, J. M. Antoine, and F. Schneider. 2000. Isolation and characterization of a Lactobacillus amylovorus mutant depleted in conjugated bile salt hydrolase activity: Relation between activity and bile salt resistance. J. Appl. Microbiol. 89: 553-563. https://doi.org/10.1046/j.1365-2672.2000.01147.x
- Grill, J. P., F. Schneider, J. Crociani, and J. Ballongue. 1995. Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536. Appl. Environ. Microbiol. 61: 2577-2582.
- Ha, C. G., J. K. Cho, Y. G. Chai, Y. A. Ha, and S. H. Shin. 2006. Purification and characterization of bile salt hydrolase from Lactobacillus plantarum CK 102. J. Microbiol. Biotechnol. 16: 1047-1052.
- Jarocki, P., M. Podlesny, A. Wasko, A. Siuda, and Z. Targonski. 2010. Differentiation of 3 Lactobacillus rhamnosus strains: E/N, Oxy and Pen by SDS-PAGE and two-dimensional electrophoresis of surface-associated proteins. J. Microbiol. Biotechnol. 20: 558-562.
- Jiang, T., A. Mustapha, and D. A. Savaiano. 1996. Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. J. Dairy Sci. 79: 750-757. https://doi.org/10.3168/jds.S0022-0302(96)76422-6
- Johnson, J. L. 1994. Similarity analysis of rRNAs, pp. 683- 700. In P. Gerhardt, W. A. Wood, N. R. Krieg, and R. Murray (eds.). Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC, USA.
- Kim, G. B., S. H. Yi, and B. Lee. 2004. Purification and characterization of three different types of bile salt hydrolase from Bifidobacterium strains. J. Dairy Sci. 87: 258-266. https://doi.org/10.3168/jds.S0022-0302(04)73164-1
- Kim, G. B., C. M. Miyamoto, E. A. Meighen, and B. H. Lee. 2004. Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl. Environ. Microbiol. 70: 5603-5612. https://doi.org/10.1128/AEM.70.9.5603-5612.2004
- Kim, G. B. and B. H. Lee. 2005. Biochemical and molecular insights into bile salt hydrolase in the gastrointestinal microflora. Asian-Aust. J. Animal Sci. 18: 1505-1512. https://doi.org/10.5713/ajas.2005.1505
- Kim, G. B. and B. H. Lee. 2008. Genetic analysis of a bile salt hydrolase in Bifidobacterium animalis subsp. lactis KL61. J. Appl. Microbiol. 105: 778-790. https://doi.org/10.1111/j.1365-2672.2008.03825.x
- Kim, J. E., J. Y. Kim, K. W. Lee, and H. J. Lee. 2007. Cancer chemopreventive effects of lactic acid bacteria. J. Microbiol. Biotechnol. 17: 1227-1235.
- Leahy, S. C., D. G. Higgins, G. F. Fitzgerald, and D. van Sinderen. 2005. Getting better with bifidobacteria. J. Appl. Microbiol. 98: 1303-1315. https://doi.org/10.1111/j.1365-2672.2005.02600.x
- Liong, M. T. and N. P. Shah. 2005. Bile salt deconjugation and BSH activity of five bifidobacterial strains and their cholesterol co-precipitating properties. Food Res. Int. 38: 135-142. https://doi.org/10.1016/j.foodres.2004.08.003
- Liong, M. T. and N. P. Shah. 2005. Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int. Dairy J. 15: 391-398. https://doi.org/10.1016/j.idairyj.2004.08.007
- Lundeen, S. G. and D. C. Savage. 1990. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. J. Bacteriol. 172: 4171-4177. https://doi.org/10.1128/jb.172.8.4171-4177.1990
- Nagengast, F. M., M. J. Grobben, and I. P. van Munster. 1995. Role of bile acids in colorectal carcinogenesis. Eur. J. Cancer 31: 1067-1070. https://doi.org/10.1016/0959-8049(95)00216-6
- Noriega, L., I. Cuevas, A. Margolles, and C. G. de los Reyes- Gavilan. 2006. Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Int. Dairy. J. 16: 850-855. https://doi.org/10.1016/j.idairyj.2005.09.008
- Patel, A. K., R. R. Singhania, A. Pandey, and S. B. Chincholkar. 2010. Probiotic bile salt hydrolase: Current developments and perspectives. Appl. Biochem. Biotechnol. 162: 166-180. https://doi.org/10.1007/s12010-009-8738-1
- Picard, C., J. Fioramonti, A. Francois, T. Robinson, F. Neant, and C. Matuchansky. 2005. Review article: Bifidobacteria as probiotic agents - physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 22: 495-512. https://doi.org/10.1111/j.1365-2036.2005.02615.x
- Pereira, D. I. and G. R. Gibson. 2002. Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit. Rev. Biochem. Mol. Biol. 37: 259-281. https://doi.org/10.1080/10409230290771519
- Tanaka, H., T. Doesburg, T. Iwasaki, and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase sactivity. J. Dairy Sci. 82: 2530-2535. https://doi.org/10.3168/jds.S0022-0302(99)75506-2
- Tanaka, H., H. Hashiba, J. Kok, and I. Mierau. 2000. Bile salt hydrolase of Bifidobacterium longum - biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 2502-2512. https://doi.org/10.1128/AEM.66.6.2502-2512.2000
- Taranto, M. P., M. Medici, G. Perdigon, A. P. Ruiz Holgado, and G. F. Valdez. 1998. Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice. J. Dairy Sci. 81: 2336-2340. https://doi.org/10.3168/jds.S0022-0302(98)70123-7
- Tlaskalova-Hogenova, H., R. Stepankova, T. Hudcovic, L. Tuckova, B. Cukrowska, R. Lodinova-Zadnikova, et al. 2004. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 93: 97-108. https://doi.org/10.1016/j.imlet.2004.02.005
- Ventura, M., D. van Sinderen, G. F. Fitzgerald, and R. Zink. 2004. Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek 86: 205-223. https://doi.org/10.1023/B:ANTO.0000047930.11029.ec
피인용 문헌
- Bifidobacteria-Host Interactions—An Update on Colonisation Factors vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/960826
- A New Insight into the Physiological Role of Bile Salt Hydrolase among Intestinal Bacteria from the Genus Bifidobacterium vol.9, pp.12, 2011, https://doi.org/10.1371/journal.pone.0114379
- Probiotic and functional characterization of bifidobacteria of Indian human origin vol.120, pp.4, 2016, https://doi.org/10.1111/jam.13086
- Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile vol.55, pp.11, 2017, https://doi.org/10.1007/s12275-017-7340-4
- Molecular Cloning, Characterization, and Comparison of Four Bile Salt Hydrolase-Related Enzymes from Lactobacillus plantarum GD2 of Human Origin vol.32, pp.3, 2011, https://doi.org/10.1080/08905436.2018.1507911
- Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development : Structural Basis for Designing BSH Inhibitors vol.27, pp.10, 2011, https://doi.org/10.1002/pro.3484
- Effect of Synbiotic Supplementation in a Very‐Low‐Calorie Ketogenic Diet on Weight Loss Achievement and Gut Microbiota: A Randomized Controlled Pilot Study vol.63, pp.19, 2011, https://doi.org/10.1002/mnfr.201900167
- Characterization of a recombinant bile salt hydrolase (BSH) from Bifidobacterium bifidum for its glycine-conjugated bile salts specificity vol.39, pp.1, 2011, https://doi.org/10.1080/10242422.2020.1804881
- Diet-Related Alterations of Gut Bile Salt Hydrolases Determined Using a Metagenomic Analysis of the Human Microbiome vol.22, pp.7, 2011, https://doi.org/10.3390/ijms22073652
- Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet vol.120, pp.None, 2011, https://doi.org/10.1016/j.fsi.2021.12.034