DOI QR코드

DOI QR Code

Effect of Ammonium Concentration on the Emission of $N_2O$ Under Oxygen-Limited Autotrophic Wastewater Nitrification

  • Kim, Dong-Jin (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Kim, Yu-Ri (Department of Environmental Sciences and Biotechnology, Hallym University)
  • Received : 2011.01.21
  • Accepted : 2011.03.15
  • Published : 2011.09.28

Abstract

A significant amount of nitrous oxide ($N_2O$), which is one of the serious greenhouse gases, is emitted from nitrification and denitrification of wastewater. Batch wastewater nitrifications with enriched nitrifiers were carried out under oxygen-limited condition with synthetic (without organic carbon) and real wastewater (with organic carbon) in order to find out the effect of ammonium concentration on $N_2O$ emission. Cumulated $N_2O$-N emission reached 3.0, 5.7, 6.2, and 13.5 mg from 0.4 l of the synthetic wastewater with 50, 100, 200, and 500 mg/l ${NH_4}^+$-N, respectively, and 1.0 mg from the real wastewater with 125 mg/l ${NH_4}^+$-N. The results indicate that $N_2O$ emission increased with ammonium concentration and the load. The ammonium removal rate and nitrite concentration also increased $N_2O$ emission. Comparative analysis of $N_2O$ emission from synthetic and real wastewaters revealed that wastewater nitrification under oxygen-limited condition emitted more $N_2O$ than that of heterotrophic denitrification. Summarizing the results, it can be concluded that denitrification by autotrophic nitrifiers contributes significantly to the $N_2O$ emission from wastewater nitrification.

Keywords

References

  1. Bock, E., I. Schmidt, R. Stuven, and D. Zart. 1995. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 163: 16-20. https://doi.org/10.1007/BF00262198
  2. Colliver, B. B. and T. Stephenson. 2000. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol. Adv. 18: 219-232. https://doi.org/10.1016/S0734-9750(00)00035-5
  3. Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1980. Production of nitrite and nitrogen oxide $(N_2O)$ by nitrifying bacteria at reduced concentrations of oxygen. Appl. Environ. Microbiol. 40: 526-532.
  4. Hooper, A. B. and K. R. Terry. 1979. Hydroxylamine oxidoreductase of Nitrosomonas: Production of nitric oxide from hydroxylamine. Biochim. Biophys. Acta 571: 12-20. https://doi.org/10.1016/0005-2744(79)90220-1
  5. Intergovernmental Panel on Climate Change. 2006. IPCC Guidelines for National Greenhouse Gas Inventories. In H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe. (eds.). IGES, Japan.
  6. Kampschreur, M. J., N. C. G. Tan, R. Kleerebezem, C. Picioreanu, M. S. M. Jetten, and M. C. M. van Loosdrecht. 2008. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environ. Sci. Technol. 42: 429-435. https://doi.org/10.1021/es071667p
  7. Kampschreur, M. J., H. Temmink, R. Kleerebezem, M. S. M. Jetten, and M. C. M. van Loosdrecht. 2009. Nitrous oxide emission during wastewater treatment. Water Res. 43: 4093-4103. https://doi.org/10.1016/j.watres.2009.03.001
  8. Kim, D. J. and D. W. Seo. 2006. Selective enrichment and granulation of ammonia oxidizers in a sequencing batch airlift reactor. Proc. Biochem. 41: 1055-1062. https://doi.org/10.1016/j.procbio.2005.11.018
  9. Kim, D. J., D. I. Lee, G. C. Cha, and Keller, J. 2008. Analysis of free ammonia inhibition of nitrite oxidizing bacteria using a dissolved oxygen respirometer. Environ. Eng. Res. 13: 125-130. https://doi.org/10.4491/eer.2008.13.3.125
  10. Kim, S. W., M. Miyahara, S. Fushinobu, T. Wakagi, and H. Shoun. 2010. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria. Bioresour. Technol. 101: 3958-3963. https://doi.org/10.1016/j.biortech.2010.01.030
  11. Lemaire, R., R. Meyer, A. Taske, G. R. Crocetti, J. Keller, and Z. Yuan. 2006. Identifying causes for $N_2O$ accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal. J. Biotechnol. 122: 62-72. https://doi.org/10.1016/j.jbiotec.2005.08.024
  12. Otte, S., N. G. Grobben, L. A. Robertson, M. S. M. Jetten, and J. G. Kuenen. 1996. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Appl. Environ. Microbiol. 62: 2421-2426.
  13. Pochana, K. and J. Keller. 1999. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci. Technol. 39: 61-68.
  14. Rittmann, B. E. and P. L. McCarty Perry. 2001. Environmental Biotechnology: Principles and Applications. McGraw-Hill, New York.
  15. Tallec, G., J. Garnier, G. Billen, and M. Gousailles. 2006. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Res. 40: 2972-2980. https://doi.org/10.1016/j.watres.2006.05.037
  16. Wrage, N., G. L. Velthof, M. L. van Beusichem, and M. Oenema. 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 33: 1723-1732. https://doi.org/10.1016/S0038-0717(01)00096-7
  17. Zheng, H., K. Hanaki, and T. Matsuo. 1994. Production of nitrous oxide gas during nitrification of wastewater. Water Sci. Technol. 30: 133-141.

Cited by

  1. Effect of Aeration on Nitrous Oxide ($N_2O$) Emission from Nitrogen-Removing Sequencing Batch Reactors vol.23, pp.1, 2011, https://doi.org/10.4014/jmb.1206.06001
  2. Selective Inhibition of Ammonia Oxidation and Nitrite Oxidation Linked to $N_2O$ Emission with Activated Sludge and Enriched Nitrifiers vol.23, pp.5, 2011, https://doi.org/10.4014/jmb.1302.02017
  3. N2O emission from a sequencing batch reactor for biological N and P removal from wastewater vol.8, pp.5, 2011, https://doi.org/10.1007/s11783-013-0586-0
  4. Nitric oxide and nitrous oxide emissions from a full-scale activated sludge anaerobic/anoxic/oxic process vol.289, pp.None, 2016, https://doi.org/10.1016/j.cej.2015.12.074
  5. Effect of Ammonium Concentration on N 2 O Emission During Autotrophic Nitritation Under Oxygen-Limited Conditions vol.34, pp.2, 2011, https://doi.org/10.1089/ees.2016.0143
  6. Effect of COD/N ratio on N2O production during nitrogen removal by aerobic granular sludge vol.76, pp.12, 2011, https://doi.org/10.2166/wst.2017.502
  7. Modeling of Nitrous Oxide Production by Ammonium-Oxidizing Bacteria vol.35, pp.1, 2011, https://doi.org/10.1089/ees.2016.0564
  8. Kinetic characteristics and N2O production of a heterotrophic nitrifying bacterium Pseudomonas putida YH capable of tolerating adverse environmental conditions vol.94, pp.12, 2011, https://doi.org/10.1002/jctb.6195