References
- Cao, L., F. van Rantwijk, and R. A. Sheldon. 2000. Crosslinked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase. Organic Lett. 2: 1361-1364. https://doi.org/10.1021/ol005593x
- Carrio, M. M., R. Cubarsi, and A. Villaverde. 2007. Fine architecture of bacterial inclusion bodies. FEBS Lett. 471: 7-11.
- Dainty, A. L., K. H. Goulding, P. K. Robinson, I. Simpkins, and M. D. Trevan. 1986. Stability of alginate-immobilized algal cells. Biotechnol. Bioeng. 28: 210-216. https://doi.org/10.1002/bit.260280210
- Das, M. K. and P. C. Senapati. 2007. Evaluation of furosemide-loaded alginate microspheres prepared by ionotropic external gelation technique. Acta Pol. Pharm. 64: 253-262.
- Del Gaudio, P., P. Colombo, G. Colombo, P. Russo, and F. Sonvico. 2005. Mechanisms of formation and disintegration of alginate beads obtained by prilling. Int. J. Pharm. 302: 1-9. https://doi.org/10.1016/j.ijpharm.2005.05.041
- de Groot, N. S. and S. Ventura. 2006. Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett. 580: 6471-6476. https://doi.org/10.1016/j.febslet.2006.10.071
- Elnashar, M. M., M. A. Yassin, A. E. A. Moneim, and E. M. A. Bary. 2010. Surprising performance of alginate beads for the release of low-molecular-weight drugs. J. Appl. Polym. Sci. 116: 3021-3026.
-
Fontes, E. A. F., F. M. L. Passos, and F. J. V. Passos. 2001. A mechanistical mathematical model to predict lactose hydrolysis by
$\beta$ -galactosidase in a permeabilized cell mass of Kluyveromyces lactis: Validity and sensitivity analysis. Process Biochem. 37: 267-274. https://doi.org/10.1016/S0032-9592(01)00211-4 - Garcia-Fruitos, E., A. Aris, and A. Villaverde. 2007. Localization of functional polypeptides in bacterial inclusion bodies. Appl. Environ. Microbiol. 73: 289-294. https://doi.org/10.1128/AEM.01952-06
-
Garcia-Fruitos, E., M. M. Carrio, A. Aris, and A. Villaverde. 2005. Folding of a misfolding-prone
$\beta$ -galactosidase in absence of DnaK. Biotechnol. Bioeng. 90: 869-875. https://doi.org/10.1002/bit.20496 - Garcia-Fruitos, E., N. Gonzalez-Montalban, M. Morell, A. Vera, R. M. Ferraz, A. Aris, et al. 2005. Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb. Cell Fact. 4: 27. https://doi.org/10.1186/1475-2859-4-27
-
Haider, T. and Q. Husain. 2007. Calcium alginate entrapped preparations of Aspergillus oryzae
$\beta$ -galactosidase: Its stability and applications in the hydrolysis of lactose. Int. J. Biol. Macromol. 41: 72-80. https://doi.org/10.1016/j.ijbiomac.2007.01.001 -
Hung, C.-P., H.-F. Lo, W.-H. Hsu, S.-C. Chen, and L.-L. Lin. 2008. Immobilization of Escherichia coli novablue
$\gamma$ - glutamyltranspeptidase in Ca-alginate-$\kappa$ -carrageenan beads. Appl. Biochem. Biotechnol. 150: 157-170. https://doi.org/10.1007/s12010-008-8244-x -
Jung, K.-H. 2008. Enhanced enzyme activities of inclusion bodies of recombinant
$\beta$ -galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol. 18: 434-442. -
Jung, K.-H., J.-H. Yeon, S.-K. Moon, and J. H. Choi. 2008. Methyl
$\alpha-_D-glucopyranoside$ enhances the enzymatic activity of recombinant$\beta$ -galactosidase inclusion bodies in the araBAD promoter system of Escherichia coli. J. Ind. Microbiol. Biotechnol. 35: 695-701. https://doi.org/10.1007/s10295-008-0329-6 -
Laderoa, M., A. Santosa, J. L. Garcia, and F. Garcia-Ochoa. 2001. Activity over lactose and ONPG of a genetically engineered
$\beta$ -galactosidase from Escherichia coli in solution and immobilized: Kinetic modeling. Enzyme Microb. Technol. 29: 181-193. https://doi.org/10.1016/S0141-0229(01)00366-0 - Matricardi, P., C. D. Meo, T. Coviello, and F. Alhaique. 2008. Recent advances and perspectives on coated alginate microspheres for modified drug delivery. Expert Opin. Drug Deliv. 5: 417-425. https://doi.org/10.1517/17425247.5.4.417
- Mavropoulou, I. P. and F. V. Kosikowski. 1973. Composition, solubility, and stability of whey powders. J. Dairy Sci. 56: 1128-1134. https://doi.org/10.3168/jds.S0022-0302(73)85321-4
- Nahalka, J., A. Vikartovska, and E. Hrabarova. 2008. A crosslinked inclusion body process for sialic acid synthesis. J. Biotechnol. 134: 146-153. https://doi.org/10.1016/j.jbiotec.2008.01.014
-
Pessela, B. C. C., C. Mateo, M. Fuentes, A. Vian, J. L. Garcia, A. V. Carrascosa, et al. 2003. The immobilization of a thermophilic
$\beta$ -galactosidase on Sepabeads supports decreases product inhibition: Complete hydrolysis of lactose in dairy products. Enzyme Microb. Technol. 33: 199-205. https://doi.org/10.1016/S0141-0229(03)00120-0 - Ribeiro, C. C., C. C. Barrias, and M. A. Barbosa. 2004. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 25: 4363-4373. https://doi.org/10.1016/j.biomaterials.2003.11.028
- Rinas, U., F. Hoffmann, E. Betiku, D. Estape, and S. Marten. 2007. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J. Biotechnol. 127: 244-257. https://doi.org/10.1016/j.jbiotec.2006.07.004
- Smidsrod, O. and G. Skjak-Braek. 1990. Alginate as immobilization matrix for cells. Trends Biotechnol. 8: 71-78 https://doi.org/10.1016/0167-7799(90)90139-O
- Tokatlidis, K., P. Dhurjati, J. Millet, P. Beguin, and J. P. Aubert. 1991. High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett. 282: 205-208. https://doi.org/10.1016/0014-5793(91)80478-L
- Tonnesen, H. H. and J. Karlsen. 2002. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 28: 621-630. https://doi.org/10.1081/DDC-120003853
-
Worrall, D. M. and N. H. Goss. 1989. The formation of biologically active
$\beta$ -galactosidase inclusion bodies in Escherichia coli. Aust. J. Biotechnol. 3: 28-32. -
Yeon, J.-H. and K.-H. Jung. 2010. Change in compactness of inclusion bodies of recombinant
$\beta$ -galactosidase expressed in the araBAD promoter system of Escherichia coli. Biotechnol. Bioprocess Eng. 15: 620-625. https://doi.org/10.1007/s12257-009-0170-4 -
Yeon, J.-H. and K.-H. Jung. 2010. Operation of packed-bed immobilized cell reactor featuring active
$\beta$ -galactosidase inclusion body-containing recombinant Escherichia coli cells. Biotechnol. Bioprocess Eng. 15: 822-829. https://doi.org/10.1007/s12257-010-0034-y
Cited by
-
Galactooligosaccharide Synthesis by Active
${\beta}$ -Galactosidase Inclusion Bodies-Containing Escherichia coli Cells vol.21, pp.11, 2011, https://doi.org/10.4014/jmb.1105.05021 - Long-term Repeated-Batch Operation of Immobilized Escherichia coli Cells to Synthesize Galactooligosaccharide vol.22, pp.11, 2011, https://doi.org/10.4014/jmb.1204.04020
-
Production of Chlorphenesin Galactoside by Whole Cells of
${\beta}$ -Galactosidase-Containing Escherichia coli vol.23, pp.6, 2011, https://doi.org/10.4014/jmb.1211.11009 -
Enzymatic Synthesis of 2-Phenoxyethanol Galactoside by Whole Cells of
${\beta}$ -Galactosidase-Containing Escherichia coli vol.24, pp.9, 2011, https://doi.org/10.4014/jmb.1404.04004