DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of Mannitol-1-Phosphate Dehydrogenase from Vibrio cholerae

  • Rambhatla, Prashanthi (Eastern New Mexico University, Department of Biology) ;
  • Kumar, Sanath (Eastern New Mexico University, Department of Biology) ;
  • Floyd, Jared T. (Eastern New Mexico University, Department of Biology) ;
  • Varela, Manuel F. (Eastern New Mexico University, Department of Biology)
  • Received : 2011.04.14
  • Accepted : 2011.06.14
  • Published : 2011.09.28

Abstract

Vibrio cholerae utilizes mannitol through an operon of the phosphoenolpyruvate-dependent phosphotransferase (PTS) type. A gene, mtlD, encoding mannitol-1-phosphate dehydrogenase was identified within the 3.9 kb mannitol operon of V. cholerae. The mtlD gene was cloned from V. cholerae O395, and the recombinant enzyme was functionally expressed in E. coli as a $6{\times}$His-tagged protein and purified to homogeneity. The recombinant protein is a monomer with a molecular mass of 42.35 kDa. The purified recombinant MtlD reduced fructose 6-phosphate (F6P) using NADH as a cofactor with a $K_m$ of $1.54{\pm}0.1$ mM and $V_{max}$ of $320.8{\pm}7.81\;{\mu}mol$/min/mg protein. The pH and temperature optima for F6P reduction were determined to be 7.5 and $37^{\circ}C$, respectively. Using quantitative real-time PCR analysis, mtlD was found to be constitutively expressed in V. cholerae, but the expression was up-regulated when grown in the presence of mannitol. The MtlD expression levels were not significantly different between V. cholerae O1 and non-O1 strains.

Keywords

References

  1. Akagawa, E., K. Kurita, T. Sugawara, K. Nakamura, Y. Kasahara, N. Ogasawara, and K. Yamane. 1995. Determination of a 17,484 bp nucleotide sequence around the 39 degrees region of the Bacillus subtilis chromosome and similarity analysis of the products of putative ORFs. Microbiology 141: 3241-3245. https://doi.org/10.1099/13500872-141-12-3241
  2. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  3. Ausubel, F. M., R. Brent, R. E. Kingsten, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1995. In: Short Protocols in Molecular Biology, 3rd Ed. John Wiley and Sons, New York.
  4. Berkowitz, D. 1971. $_D-Mannitol$ utilization in Salmonella Typhimurium. J. Bacteriol. 105: 232-240.
  5. Brunker, P., J. Altenbuchner, K. D. Kulbe, and R. Mattes. 1997. Cloning, nucleotide sequence and expression of a mannitol dehydrogenase gene from Pseudomonas fluorescens DSM 50106 in Escherichia coli. Biochim. Biophys. Acta 1351: 157-167. https://doi.org/10.1016/S0167-4781(96)00189-3
  6. Feng, L., P. R. Reeves, R. Lan, Y. Ren, C. Gao, Z. Zhou, et al. 2008. A recalibrated molecular clock and independent origins for the cholera pandemic clones. PLoS One 3: e4053. https://doi.org/10.1371/journal.pone.0004053
  7. Fischer, R. and W. Hengstenberg. 1992. Mannitol-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus. Sequence and expression in Escherichia coli and structural comparison with the enzyme II mannitol of Escherichia coli. Eur. J. Biochem. 204: 963-969. https://doi.org/10.1111/j.1432-1033.1992.tb16717.x
  8. Fischer, R., R. Pogge von Strandmann, and W. Hengstenberg. 1991. Mannitol-specific phosphoenolpyruvate-dependent phosphotransferase system of Enterococcus faecalis: Molecular cloning and nucleotide sequence of enzyme IIIMtl and the mannitol-1-phosphate dehydrogenase gene expression in Escherichia coli and comparison of the gene product with similar enzymes. J. Bacteriol. 173: 3709-3715. https://doi.org/10.1128/jb.173.12.3709-3715.1991
  9. Gottesman, S., E. Halpern, and P. Trisler. 1981. Role of sulA and sulB in filamentation by Ion mutants of Escherichia coli K-12. J. Bacteriol. 148: 265-273.
  10. Honeyman, A. L. and R. Curtiss, III. 1992. Isolation, characterization, and nucleotide sequence of the Streptococcus mutans mannitol phosphate dehydrogenase gene and the mannitol-specific factor III gene of the phosphoenolpyruvate phosphotransferase system. Infect. Immun. 60: 3369-3375.
  11. Houot, L. and P. I.Watnick. 2008. A novel role for enzyme I of the Vibrio cholerae phosphoenolpyruvate phosphotransferase system in regulation of growth in a biofilm. J. Bacteriol. 190: 311-320. https://doi.org/10.1128/JB.01410-07
  12. Jennings, D. H. 1984. Polyol metabolism in fungi. Adv. Microb. Physiol. 25: 149-193.
  13. Jornvall, H., B. Persson, and J. Jeffery. 1987. Characteristics of alcohol/polyol dehydrogenases. The zinc-containing long-chain alcohol dehydrogenases. Eur. J. Biochem. 167: 195-201. https://doi.org/10.1111/j.1432-1033.1987.tb13323.x
  14. Kumar, S., K. P. Smith, J. L. Floyd, and M. F. Varela. 2011. Cloning and molecular analysis of a mannitol operon of phosphoenolpyruvate-dependent phosphotransferase (PTS) type from Vibrio cholerae O395. Arch. Microbiol. 193: 201-208. https://doi.org/10.1007/s00203-010-0663-8
  15. Lee, C. A. and M. H. Saier, Jr. 1983. Mannitol-specific enzyme II of the bacterial phosphotransferase system. III. The nucleotide sequence of the permease gene. J. Biol. Chem. 258: 10761-10767.
  16. Lee, C. A., G. R. Jacobson, and M. H. Saier, Jr. 1981. Plasmiddirected synthesis of enzymes required for $_D-mannitol$ transport and utilization in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 7336-7340. https://doi.org/10.1073/pnas.78.12.7336
  17. Liss, M., S. B. Horowitz, and N. O. Kaplan. 1962. $_D-Mannitol$ 1-phosphate dehydrogenase and $_D-sorbitol$ 6-phosphate dehydrogenase in Aerobacter aerogenes. J. Biol. Chem. 237: 1342-1350.
  18. Neidle, E., C. Hartnett, L. N. Ornston, A. Bairoch, M. Rekik, and S. Harayama. 1992. Cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur. J. Biochem. 204: 113-120. https://doi.org/10.1111/j.1432-1033.1992.tb16612.x
  19. Noeldner, P. K. M., M. J. Coleman, R. Faulks, and R. P. Oliver. 1994. Purification and characterization of mannitol dehydrogenase from the fungal tomato pathogen Cladosporium fulvum (syn Fulvia fulva). Physiol. Mol. Plant Pathol. 45: 281-289. https://doi.org/10.1016/S0885-5765(05)80059-1
  20. Persson, B., M. Krook, and H. Jornvall. 1991. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur. J. Biochem. 200: 537-543. https://doi.org/10.1111/j.1432-1033.1991.tb16215.x
  21. Reidl, J. and K. E. Klose. 2002. Vibrio cholerae and cholera: Out of the water and into the host. FEMS Microbiol. Rev. 26: 125-139. https://doi.org/10.1111/j.1574-6976.2002.tb00605.x
  22. Schneider, K. H., F. Giffhorn, and S. Kaplan. 1993. Cloning, nucleotide sequence and characterization of the mannitol dehydrogenase gene from Rhodobacter sphaeroides. J. Gen. Microbiol. 139: 2475-2484. https://doi.org/10.1099/00221287-139-10-2475
  23. Stoop, J. M. and H. Mooibroek. 1998. Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress. Appl. Environ. Microbiol. 64: 4689-4696.
  24. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  25. Wang, H. Y., X. Zheng, J. Lou, M. Y. Yan, Y. W. Zhao, and B. Kan. 2009. Comparison of the transcriptional levels of mannitol PTS operon between epidemic and non-epidemic strains of Vibrio cholerae. Acta Acad. Med. Sin. 31: 51-54.
  26. Wang, R., H. Zhang, H. Qiu, S. Gao, and B. Kan. 2009. Proteins involved in difference of sorbitol fermentation rates of the toxigenic and nontoxigenic Vibrio cholerae El Tor strains revealed by comparative proteome analysis. BMC Microbiol. 9: 135. https://doi.org/10.1186/1471-2180-9-135
  27. Watanabe, S., M. Hamano, H. Kakeshita, K. Bunai, S. Tojo, H. Yamaguchi, et al. 2003. Mannitol-1-phosphate dehydrogenase (MtlD) is required for mannitol and glucitol assimilation in Bacillus subtilis: Possible cooperation of mtl and gut operons. J. Bacteriol. 185: 4816-4824. https://doi.org/10.1128/JB.185.16.4816-4824.2003
  28. Wierenga, R. K., M. C. H. De Maeyer, and W. G. J. Hol. 1985. Interaction of pyrophosphate moieties with alpha-helixes in dinucleotide-binding proteins. Biochemistry 24: 1346-1357. https://doi.org/10.1021/bi00327a012
  29. Wolff, J. B. and N. O. Kaplan. 1955. $_D-Mannitol$-1-phosphate dehydrogenase from Escherichia coli. J. Bacteriol. 112: 849-869.

Cited by

  1. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae vol.2, pp.1, 2014, https://doi.org/10.7243/2052-7993-2-1
  2. MtlR negatively regulates mannitol utilization by Vibrio cholerae vol.163, pp.12, 2011, https://doi.org/10.1099/mic.0.000559
  3. A thermostable mannitol‐1‐phosphate dehydrogenase is required in mannitol metabolism of the thermophilic acetogenic bacterium Thermoanaerobacter kivui vol.21, pp.10, 2011, https://doi.org/10.1111/1462-2920.14720