DOI QR코드

DOI QR Code

Effects of Carbon and Nitrogen Sources on Fatty Acid Contents and Composition in the Green Microalga, Chlorella sp. 227

  • Cho, Sun-Ja (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Lee, Duk-Haeng (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Luong, Thao Thanh (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Park, So-Ra (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Oh, You-Kwan (Bioenergy Research Center, Korea Institute of Energy Research) ;
  • Lee, Tae-Ho (Department of Civil and Environmental Engineering, Pusan National University)
  • 투고 : 2011.03.28
  • 심사 : 2011.07.08
  • 발행 : 2011.10.28

초록

In order to investigate and generalize the effects of carbon and nitrogen sources on the growth of and lipid production in Chlorella sp. 227, several nutritional combinations consisting of different carbon and nitrogen sources and concentrations were given to the media for cultivation of Chlorella sp. 227, respectively. The growth rate and lipid content were affected largely by concentration rather than by sources. The maximum specific growth was negatively affected by low concentrations of carbon and nitrogen. There is a maximum allowable inorganic carbon concentration (less than 500~1,000 mM bicarbonate) in autotrophic culture, but the maximum lipid content per gram dry cell weight (g DCW) was little affected by the concentration of inorganic carbon within the concentration. The lipid content per g DCW was increased when the microalga was cultured with the addition of glucose and bicarbonate (mixotrophic) at a fixed nitrogen concentration and with the lowest nitrogen concentration (0.2 mM), relatively. Considering that lipid contents per g DCW increased in those conditions, it suggests that a high ratio of carbon to nitrogen in culture media promotes lipid accumulation in the cells. Interestingly, a significant increase of the oleic acid amount to total fatty acids was observed in those conditions. These results showed the possibility to induce lipid production of high quality and content per g DCW by modifying the cultivation conditions.

키워드

참고문헌

  1. APHA, AWWA, and WEF. 2005. Standard Methods for the Examination of Water and Wastewater, 21th Ed., pp. 258-259. APHA, Washington, DC, USA.
  2. Becker, E. W. 1994. Microalgae: Biotechnology and Microbiology, pp. 56-62. Cambridge University Press, Cambridge, UK.
  3. Cheng, Y., Y. Lu, C. Gao, and Q, Wu. 2009. Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energ. Fuel 23: 4166-4173. https://doi.org/10.1021/ef9003818
  4. Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  5. Chiu, S. Y., C. Y. Kao, M. T. Tsai, S. C. Ong, C. H. Chen, and C. S. Lin. 2009. Lipid accumulation and $CO_2$ utilization of Nannochloropsis oculata in response to $CO_2$ aeration. Bioresour. Technol. 100: 833-838. https://doi.org/10.1016/j.biortech.2008.06.061
  6. Cho, S., T. T. Luong, D. Lee, Y.-K. Oh, and T. Lee. 2011. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresourc. Technol. DOI: 10.1016/j. biotech.2011. 03. 037
  7. Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. D. Borghi. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48: 1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
  8. Doucha, J., F. Straka, and K. Livansky. 2005. Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17: 403-412. https://doi.org/10.1007/s10811-005-8701-7
  9. D'Souza, F. M. L. and G. J. Kelly. 2000. Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus semisulcatus) larvae. Aquaculture 181: 311-329. https://doi.org/10.1016/S0044-8486(99)00231-8
  10. Francisco, E., D. Neves, E. Jacob-Lopes, and T. Franco. 2010. Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality. J. Chem. Technol. Biotechnol. 85: 395-403. https://doi.org/10.1002/jctb.2338
  11. Giordano, M. and G. Bowes. 1997. Gas exchange and C allocation in Dunaliella salina cells in response to the N source and $CO_2$ concentration used for growth. Plant Physiol. 115: 1049-1056.
  12. Gouveia, L. and A. C. Oliveira. 2009. Microalgae as a raw material for biofuels production. Int. Microbiol. Biotechnol. 36: 269-274. https://doi.org/10.1007/s10295-008-0495-6
  13. Heredia-Arroyo, T., W. Wei, and B. Hu. 2010. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl. Biochem. Biotechnol. 162: 1978-1995. https://doi.org/10.1007/s12010-010-8974-4
  14. Hsieh, C.-H. and W.-T. Wu. 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 100: 3921-3926. https://doi.org/10.1016/j.biortech.2009.03.019
  15. Hu, Q., M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 54: 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  16. Illman, A. M., A. H. Scragg, and S. W. Shales. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27: 631-635. https://doi.org/10.1016/S0141-0229(00)00266-0
  17. Khotimchenko, S. V. and I. M. Yakovleva. 2005. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66: 73-79. https://doi.org/10.1016/j.phytochem.2004.10.024
  18. Lee, J. H., J. S. Lee, C. S. Shin, S. C. Park, and S. W. Kim. 2000. Effects of NO and $SO_2$ on growth of highly-$CO_2$-tolerant microalgae. J. Microbiol. Biotechnol. 10: 338-343.
  19. Lepage, G. and C. C. Roy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396.
  20. Li, X., H. Xu, and Q. Wu. 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 98: 764-771. https://doi.org/10.1002/bit.21489
  21. Li, Y., M. Horsman, B. Wang, N. Wu, and C. Q. Lan. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629-636. https://doi.org/10.1007/s00253-008-1681-1
  22. Liu, Z. Y., G. C. Wang, and B. C. Zhou. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 99: 4717-4722. https://doi.org/10.1016/j.biortech.2007.09.073
  23. Mulbry, W., S. Kondrad, and J. Buyer. 2008. Treatment of dairy and swine manure effluents using freshwater algae: Fatty acid content and composition of algal biomass at different manure loading rates. J. Appl. Phycol. 20: 1079-1085. https://doi.org/10.1007/s10811-008-9314-8
  24. NREL. 1988. A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae. NREL report/ TP-580-24190.
  25. Oh, H. M., J. S. Kim, and S. J. Lee. 1998. Review: Biological fixation of global warming gas ($CO_2$) by microalgae. Korean J. Environ. Biol. 16: 291-297.
  26. Osward, W. J. 1988. In M. B. Borowitzda (ed.). Microalgae and Wastewater Treatment, pp. 254-260. Cambridge University Press, Cambridge, UK.
  27. Perez-Garcia, O., F. M. Escalante, L. E. de-Bashan, and Y. Bashan. 2011. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45: 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  28. Petkov, G. and G. Garcia. 2007. Which are fatty acids of the green alga Chlorella? Biochem. Syst. Ecol. 35: 281-285. https://doi.org/10.1016/j.bse.2006.10.017
  29. Pentecost, A. 1999. Analyzing Environmental Data, pp. 84-98. Longman.
  30. Piorreck, M. and P. Pohl. 1984. Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue-green algae during one growth phase. Phytochemistry 23: 217-223. https://doi.org/10.1016/S0031-9422(00)80305-2
  31. Renaud, S. M., L. V. Thinh, G, Lambrinidis, and D. L. Parry. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211: 195-214. https://doi.org/10.1016/S0044-8486(01)00875-4
  32. Richmond, A. 2004. Handbook of Microalgal Culture: Biotechnology and Applied Phycology, pp. 116-124. Blackwell Science Ltd.
  33. Rodolfi, L., G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. R. Tredici. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
  34. Shen, Y., Z. Pei, W. Yuan, and E. Mao. 2009. Effect of nitrogen and extraction method on algae lipid yield. Int. J. Agric. Biol. Eng. 2: 51-57.
  35. Shi, X. M., X. W. Zhang, and F. Chen. 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Technol. 27: 312-318. https://doi.org/10.1016/S0141-0229(00)00208-8
  36. Takagi, M., K. Watanabe, K. Yamaberi, and T. Yoshida. 2000. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl. Microbiol. Biotechnol. 54: 112-117. https://doi.org/10.1007/s002530000333
  37. Thielmann, J., A. Goyal, and N. E. Tolbert. 1992. Two polypeptides in the inner chloroplast envelope of Dunaliella tertiolecta induced by low $CO_2$. Plant Physiol. 100: 2113-2115. https://doi.org/10.1104/pp.100.4.2113
  38. Tighe, S. W., P. de Lajudie, K. Dipietro, K. Lindstrom, G. Nick, and B. D. Jarvis. 2000. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int. J. Syst. Evol. Microbiol. 50: 787-801. https://doi.org/10.1099/00207713-50-2-787
  39. Tran, H. L., S. J. Hong, and C. G. Lee. 2009. Evaluation of extraction methods for recovery of fatty acids from Botryococcus braunii LB572 and Synechocystis sp. PCC 6803. Biotechnol. Bioproc. Eng. 14: 187-192. https://doi.org/10.1007/s12257-008-0171-8
  40. Xiong, W., X. Li, J. Xiang, and Q. Wu. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78: 29-36. https://doi.org/10.1007/s00253-007-1285-1
  41. Xu, H., X. Miao, and Q. Wu. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126: 499-507. https://doi.org/10.1016/j.jbiotec.2006.05.002
  42. Yoo, C., S.-Y. Jun, J.-Y. Lee, C.-Y. Ahn, and H.-M. Oh. 2010. Selection of microalgae for lipid production under high levels of carbon dioxide. Bioresour. Technol. 101: S71-S74. https://doi.org/10.1016/j.biortech.2009.03.030
  43. Yun, Y., S. Lee, J. Park, C. Lee, and J. Yang. 1997. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Technol. Biotechnol. 69: 451-455. https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<451::AID-JCTB733>3.0.CO;2-M
  44. Westerhoffa, P., Q. Hub, M. Esparza-Sotoc, and W. Vermaasd. 2010. Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environ. Technol. 31: 523-532. https://doi.org/10.1080/09593330903552078

피인용 문헌

  1. Oil extraction by aminoparticle-based H2O2 activation via wet microalgae harvesting vol.3, pp.31, 2011, https://doi.org/10.1039/c3ra23266b
  2. Microalgal biomass production pathways: evaluation of life cycle environmental impacts vol.6, pp.None, 2011, https://doi.org/10.1186/1754-6834-6-88
  3. Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production vol.14, pp.None, 2013, https://doi.org/10.1016/j.ijggc.2013.01.016
  4. An applicable nitrogen supply strategy for attached cultivation of Aucutodesmus obliquus vol.26, pp.1, 2011, https://doi.org/10.1007/s10811-013-0115-3
  5. Mixotrophic cultivation of oleaginous Chlorella sp. KR-1 mediated by actual coal-fired flue gas for biodiesel production vol.37, pp.10, 2014, https://doi.org/10.1007/s00449-014-1186-5
  6. 플라스크 배양에서 Chlorella sp. KR-1의 균체 성장 및 지질 생산에 대한 질소원 및 유기탄소원의 영향 vol.6, pp.2, 2014, https://doi.org/10.15433/ksmb.2014.6.2.110
  7. NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential vol.100, pp.5, 2016, https://doi.org/10.1007/s00253-015-7140-x
  8. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production vol.4, pp.None, 2016, https://doi.org/10.7717/peerj.1780
  9. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris vol.24, pp.15, 2011, https://doi.org/10.1007/s11356-017-8875-y
  10. Contaminated bacterial effects and qPCR application to monitor a specific bacterium in Chlorella sp. KR-1 culture vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-016-0584-8
  11. Correlation between lipid and carotenoid synthesis in torularhodin-producing Rhodotorula glutinis vol.67, pp.8, 2017, https://doi.org/10.1007/s13213-017-1284-0
  12. Potential use of vegetable waste for biofuel production vol.92, pp.1, 2011, https://doi.org/10.1002/jctb.5002
  13. Chlorella saccharophila 배양 최적화 및 유용물질의 생산 vol.55, pp.1, 2011, https://doi.org/10.9713/kcer.2017.55.1.74
  14. Opportunities and Challenges of Microalgal Cultivation on Wastewater, with Special Focus on Palm Oil Mill Effluent and the Production of High Value Compounds vol.10, pp.8, 2019, https://doi.org/10.1007/s12649-018-0256-3
  15. Physiological Traits of Dihomo-γ-Linolenic Acid Production of the Engineered Aspergillus oryzae by Comparing Mathematical Models vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.546230
  16. Optimization of enzymatic degradation of dealginated kelp waste through response surface methodology vol.32, pp.1, 2011, https://doi.org/10.1007/s10811-019-01894-7
  17. Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement vol.60, pp.None, 2011, https://doi.org/10.1016/j.algal.2021.102542