DOI QR코드

DOI QR Code

Cloning, Expression, Purification, and Properties of an Endoglucanase Gene (Glycosyl Hydrolase Family 12) from Aspergillus niger VTCC-F021 in Pichia pastoris

  • Pham, Thi Hoa (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Quyen, Dinh Thi (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Nghiem, Ngoc Minh (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Vu, Thu Doan (Institute of Biotechnology, Vietnam Academy of Science and Technology)
  • Received : 2011.04.20
  • Accepted : 2011.07.07
  • Published : 2011.10.28

Abstract

A gene coding for an endoglucanase (EglA), of the glycosyl hydrolase family 12 and derived from Aspergillus niger VTCC-F021, was cloned and sequenced. The cDNA sequence, 717 bp, and its putative endoglucanase, a 238 aa protein with a predicted molecular mass of 26 kDa and a pI of 4.35, exhibited 98.3-98.7% and 98.3-98.6% identities, respectively, with cDNA sequences and their corresponding endoglucanases from Aspergillus niger strains from the GenBank. The cDNA was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 1.59 U/ml culture supernatant, after 72 h of growth in a YP medium induced with 1% (v/v) of methanol. The molecular mass of the purified EglA, determined by SDS-PAGE, was 33 kDa, with a specific activity of 100.16 and 19.91 U/mg toward 1% (w/v) of ${\beta}$-glucan and CMC, respectively. Optimal enzymatic activity was noted at a temperature of $55^{\circ}C$ and a pH of 5. The recombinant EglA (rEglA) was stable over a temperature range of $30-37^{\circ}C$ and at pH range of 3.5-4.5. Metal ions, detergents, and solvents tested indicated a slightly inhibitory effect on rEglA activity. Kinetic constants ($K_m$, $V_{max}$, $k_{cat}$, and $k_{cat}/K_m$) determined for rEglA with ${\beta}$-glucan as a substrate were 4.04 mg/ml, 102.04 U/mg, 2,040.82 $min^{-1}$, and 505.05, whereas they were 10.17 mg/ml, 28.99 U/mg, 571.71 $min^{-1}$, and 57.01 with CMC as a substrate, respectively. The results thus indicate that the rEglA obtained in this study is highly specific toward ${\beta}$-glucan. The biochemical properties of rEglA make it highly valuable for downstream biotechnological applications, including potential use as a feed enzyme.

Keywords

References

  1. Bauer, M. W., L. E. Driskill, W. Callen, M. A. Snead, E. J. Mathur, and R. M. Kelly. 1999. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes $\beta$-1,4 bonds in mixed-linkage (1-3$(1-4)-\beta-_D-glucans$ and cellulose. J. Bacteriol. 181: 284-290.
  2. Beguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13: 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  3. Bhat, M. K. 2004. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355-383.
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Claeyssens, M., H. V. Tilbeurgh, J. P. Kamerling, J. Berg, M. Vrsanska, and P. Biely. 1990. Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM 9414. Substrate specificity and transfer activity of endoglucanase I. Biochem. J. 270: 251-256.
  6. Dienes, D., A. Egyhazi, and K. Reczey. 2004. Treatment of recycled fiber with Trichoderma cellulases. Ind. Crop Prod. 20: 11-21. https://doi.org/10.1016/j.indcrop.2003.12.009
  7. Duan, X. Y., S. Y. Liu, W. Zhang, C. Q. X. Zhang, and P. J. Gao. 2004. Volumetric productivity improvement for endoglucanase of Trichoderma pseudokoingii S-38. J. Appl. Microbiol. 96: 772-776. https://doi.org/10.1111/j.1365-2672.2004.02204.x
  8. Elshafei, A. M., M. H. Mohamed, M. H. Bakry, M. A. Osama, M. A. Housam, and M. O. Abdelmageed. 2009. Purification and properties of an endoglucanase of Aspergillus terreus DSM 826. J. Basic Microbiol. 49: 426-432. https://doi.org/10.1002/jobm.200800227
  9. Feng, Y., C. J. Duan, H. Pang, X. C. Mo, C. F. Wu, and Y. Yu. 2007. Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl. Microbiol. Biotechnol. 75: 319-328. https://doi.org/10.1007/s00253-006-0820-9
  10. Hong, J., H. Tamaki, S. Akiba, K. Yamamoto, and H. Kumagai. 2001. Cloning of a gene encoding a highly stable endo-beta-1,4- glucanase from Aspergillus niger and its expression in yeast. J. Biosci. Bioeng. 92: 434-441.
  11. Huang, Y., G. Krauss, S. Cottaz, H. Driguez, and G. Lipps. 2005. A highly acid-stable and thermostable endo-$\beta$-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem. J. 385: 581-588. https://doi.org/10.1042/BJ20041388
  12. Hurst, P. L., J. Nielsen, P. A. Sullivan, and M. G. Shepherd. 1977. Purification and properties of a cellulase from Aspergillus niger. Biochem. J. 165: 33-41.
  13. Jabbar, A., M. H. Rashid, and M. R. Javed. 2008. Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition. J. Ind. Microbiol. Biotechnol. 35: 515-524. https://doi.org/10.1007/s10295-008-0310-4
  14. Julenius, K., A. Molgaard, R. Gupta, and S. Brunak. 2005. Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153-164.
  15. Kanai, T., N. Ueki, T. Kawaguchi, Y. Teranishi, H. Atomi, C. Tomorbaatar, M. Ueda, and A. Tanaka. 1997. Recombinant thermostable cycloinulo-oligosaccharide fructanotransferase produced by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63: 4956-4960.
  16. Kitamoto, N., M. Go, T. Shibayama, T. Kimura, Y. Kito, K. Ohmiya, and N. Tsukagoshi. 1996. Molecular cloning, purification and characterization of two endo-1,4-beta-glucanases from Aspergillus oryzae KBN616. Appl. Microbiol. Biotechnol. 46: 538-544. https://doi.org/10.1007/s002530050857
  17. Kodama, S., M. Tsujimoto, N. Tsuruoka, T. Sugo, T. Endo, and A. Kobata. 1993. Role of sugar chains in the in vitro activity of recombinant human interleukin 5. Eur. J. Biochem. 211: 903-908. https://doi.org/10.1111/j.1432-1033.1993.tb17624.x
  18. Laemmli, U. K. 1970. Clevage of structure proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  19. Lynd, L. R., J. Paul, P. J. Weimer, W. H. Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506-577. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  20. Macauley-Patrick, S., M. L. Fazenda, B. McNeil, and L. M. Harvey. 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270. https://doi.org/10.1002/yea.1208
  21. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Biochem. 31: 426-428.
  22. Nazir, A., R. Soni, H. S. Saini, R. K. Manhas, and B. S. Chadha. 2009. Purification and characterization of an endoglucanase from Aspergillus terreus highly active against barley b-glucan and xyloglucan. World J. Microbiol. Biotechnol. 25: 1189-1197. https://doi.org/10.1007/s11274-009-0001-y
  23. Okada, H., K. Tada, T. Sekiya, K. Yokoyama, A. Takahashi, A. Tohda, H. Kumagai, and Y. Morikawa. 1998. Molecular characterization and heterologous expression of the gene encoding a low-molecular-mass endoglucanase from Trichoderma reesei QM9414. Appl. Environ. Microbiol. 62: 555-563.
  24. Ooi, T., K. Minamiguchi, T. Kawaguchi, H. Okada, S. Murao, and M. Arai. 1993. Expression of the cellulase (FI-CMCase) gene of Aspergillus aculeatus in Escherichia coli. Biosci. Biotechnol. Biochem. 57: 1960-1961. https://doi.org/10.1271/bbb.57.1960
  25. Ooi, T., A. Shinmyo, H. Okada, S. Murao, T. Kawaguchi, and M. Arai. 1990. Complete nucleotide sequence of a gene coding for Aspergillus aculeatus cellulase (F1-CMCase). Nucleic Acids Res. 18: 5884. https://doi.org/10.1093/nar/18.19.5884
  26. Palomer, X., E. Dominguez-Puigjaner, M. Vendrell, and I. Llop-Tous. 2004. Study of the strawberry Cel1 endo-(1,4)-glucanase protein accumulation and characterization of its in vitro activity by heterologous expression in Pichia pastoris. Plant Sci. 167: 509-518. https://doi.org/10.1016/j.plantsci.2004.04.017
  27. Pauly, M., L. N. Andersen, S. Kauppinen, L. V. Kofod, W. S. York, P. Albersheim, and A. Darvill. 1999. A xyloglucan-specific endo-beta-1,4-glucanase from Aspergillus aculeatus: Expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9: 93-100. https://doi.org/10.1093/glycob/9.1.93
  28. Quyen, D. T., S. L. T. Nguyen, and T. T. Dao. 2007. A novel esterase from Ralstonia sp. M1: Gene cloning, sequencing, high-level expression and characterization. Prot. Expr. Purif. 51: 133-140. https://doi.org/10.1016/j.pep.2006.06.009
  29. Rashid, M. H., M. R. Javed, T. Kawaguchi, J. Sumitani, and M. Arai. 2008. Improvement of Aspergillus oryzae for hyperproduction of endoglucanase: Expression cloning of cmc-1 gene of Aspergillus aculeatus. Biotechnol. Lett. 30: 2165-2172. https://doi.org/10.1007/s10529-008-9804-4
  30. Rose, S. H. and W. H. Zyl. 2002. Constitutive expression of the Trichoderma reesei $\beta$-1,4-xylanase gene (xyn2) and the $\beta$-1,4- endoglucanase gene (egI) in Aspergillus niger in molasses and defined glucose media. Appl. Microbiol. Biotechnol. 58: 461-468. https://doi.org/10.1007/s00253-001-0922-3
  31. Sakamoto, S., G. Tamura, K. Ito, T. Ishikawa, K. Iwano, and N. Nishiya. 1995. Cloning and sequencing of cellulase cDNA from Aspergillus kawachii and its expression in Saccharomyces cerevisiae. Curr. Genet. 27: 435-439. https://doi.org/10.1007/BF00311212
  32. Terashima, M., A. Kubo, M. Suzawa, Y. Itoh, and S. Katoh. 1994. The role of the N-linked carbohydrate chain of rice a-amylase in thermostability and enzyme kinetics. Eur. J. Biochem. 226: 249-254. https://doi.org/10.1111/j.1432-1033.1994.tb20048.x
  33. Vlasenko, E., M. Schulein, J. Cherry, and F. Xu. 2010. Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour. Technol. 101: 2405-2411. https://doi.org/10.1016/j.biortech.2009.11.057
  34. Waksman, G. 1991. Purification and characterization of two endo-1-4- $beta-_D-glucanases$ from Sclerotinia sclerotium. Biochem. Biophys. Acta 1073: 49-55. https://doi.org/10.1016/0304-4165(91)90181-F
  35. Zhao, S., J. Huang, C. Zhang, L. Deng, N. Hu, and Y. Liang. 2010. High-level expression of an Aspergillus niger endo-$\beta$-1,4- glucanase in Pichia pastoris through gene codon optimization and synthesis. J. Microbiol. Biotechnol. 20: 467-473.

Cited by

  1. Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion vol.13, pp.None, 2011, https://doi.org/10.1186/1472-6750-13-71
  2. Preparation of lactose-free pasteurized milk with a recombinant thermostable β-glucosidase from Pyrococcus furiosus vol.13, pp.None, 2013, https://doi.org/10.1186/1472-6750-13-73
  3. Efficient Expression, Purification, and Characterization of a Novel FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus in Pichia pastoris vol.24, pp.11, 2011, https://doi.org/10.4014/jmb.1401.01061
  4. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production vol.37, pp.6, 2011, https://doi.org/10.1007/s10529-015-1779-3
  5. A Neutral Thermostable β -1,4-Glucanase from Humicola insolens Y1 with Potential for Applications in Various Industries vol.10, pp.4, 2011, https://doi.org/10.1371/journal.pone.0124925
  6. Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B vol.16, pp.10, 2015, https://doi.org/10.3390/ijms161025080
  7. Construction of Aspergillus niger integrated with cellulase gene from Ampullaria gigas Spix for improved enzyme production and saccharification of alkaline-pretreated rice straw vol.6, pp.2, 2016, https://doi.org/10.1007/s13205-016-0545-0
  8. Screening of Fungal Strains for Cellulolytic and Xylanolytic Activities Production and Evaluation of Brewers’ Spent Grain as Substrate for Enzyme Production by Selected Fungi vol.14, pp.15, 2011, https://doi.org/10.3390/en14154443