DGGE 방법과 Pyrosequencing 방법을 이용한 지렁이 장내미생물의 다양성 분석

Comparative Analysis of Bacterial Diversity in the Intestinal Tract of Earthworm (Eisenia fetida) using DGGE and Pyrosequencing

  • 김은성 (연세대학교 생명과학기술학부) ;
  • 홍성욱 (연세대학교 생명과학기술학부) ;
  • 정건섭 (연세대학교 생명과학기술학부)
  • Kim, Eun-Sung (Division of Biological Science and Technology, Yonsei University) ;
  • Hong, Sung-Wook (Division of Biological Science and Technology, Yonsei University) ;
  • Chung, Kun-Sub (Division of Biological Science and Technology, Yonsei University)
  • 투고 : 2011.08.29
  • 심사 : 2011.11.23
  • 발행 : 2011.12.28

초록

미생물과의 상호작용을 통하여 토양의 특성을 변화시킬 수 있는 지렁이 Eisenia fetida의 장내미생물 군집을 조사하기 위하여, 배양방법과 비배양방법인 DGGE와 pyrosequencing을 이용하여 8주와 16주 사육 지렁이의 장내미생물 군집을 분석하였다. 배양방법에서는 L. fusiformis(51%), B. cereus(30%), E. aerogenes(21%), 그리고 L. sphaericus (15%) 등이 우점미생물로 확인되었다. DGGE 분석에서는 B. cereus(15.1%), Enterobacter sp.(13.6%), uncultured bacterium (13.1%), 그리고 B. stearothermophilus(7.8%)가 우점미생물로 확인되었다. Pyrosequencing 분석에서는 Microbacterium soli(26%), B. cereus(10%), M. esteraromaticum(6%), 그리고 Frigoribacterium sp.(6%)가 우점미생물로 확인되었다. 그외에도 Aeromonas sp., Pseudomonas sp., Borrelia sp., Cellulosimicrobium sp., Klebsiella sp., and Leifsonia sp. 등의 미생물도 확인이 되었으며, 비배양 방법을 이용한 장내 미생물 군집 조사는 배양이 불가능한 미생물을 확인할 수 있을 뿐만 아니라 더 다양한 미생물 군집도 확인할 수 있었다.

The beneficial effects of Eisenia fetida on soil properties have been attributed to their interaction with soil microorganisms. The bacterial diversity of the intestinal tract of E. fetida was investigated by culture-dependent and culture-independent methods including denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analyses. In a pure culture, Lysinibacillus fusiformis (51%), Bacillus cereus (30%), Enterobacter aerogenes (21%), and L. sphaericus (15%) were identified as the dominant microorganisms. In the DGGE analyses, B. cereus (15.1%), Enterobacter sp. (13.6%), an uncultured bacterium (13.1%), and B. stearothermophilus (7.8%) were identified as the dominant microorganisms. In the pyrosequencing analyses, Microbacterium soli (26%), B. cereus (10%), M. esteraromaticum (6%), and Frigoribacterium sp. (6%) were identified as the dominant microorganisms. The other strains identified were Aeromonas sp., Pseudomonas sp., Borrelia sp., Cellulosimicrobium sp., Klebsiella sp., and Leifsonia sp. The results illustrate that culture independent methods are better able to detect unculturable microorganisms and a wider range of species, as opposed to isolation by culture dependent methods.

키워드

참고문헌

  1. Ahmed, I., A. Yokota, A. Yamazoe, and T. Fujiwara. 2007. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57: 1117- 1125. https://doi.org/10.1099/ijs.0.63867-0
  2. Byzov, B. A., T. Nechitailo, B. K. Bumazhkin, A. V. Kurakov, P. N. Golyshin, and D. G. Zvyagintsev. 2009. Culturable microorganisms from the digestive tract of earthworm. Mikrobiolgiia. 78: 404-413.
  3. Droege, M. and H. Brendon. 2008. The genome sequencer $FLX^{TM}$ System-longer reads, more applications, straight forward bioinformatics and more complete data sets. J. Biotechnol. 136: 3-10. https://doi.org/10.1016/j.jbiotec.2008.03.021
  4. Edwards, C. A. and K. E. Fletcher. 1988. Interactions between earthworms and microorganisms in organic-matter breakdown. Agric. Ecosyst. Environ. 24: 235-247. https://doi.org/10.1016/0167-8809(88)90069-2
  5. Farnleitner, A. H., F. Zibuschka, M. M. Burtscher, G. Lindner, G. R. L. Mach. 2004. Eubacterial 16S-rDNA amplicon profiling: a rapid technique for comparsion and differentiation of heterotrophic plate count communities from drinking water. Int. J. Food Microbiol. 92: 333-375. https://doi.org/10.1016/j.ijfoodmicro.2003.08.014
  6. Fisher, S. G. and L. S. Lerman. 1983. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80: 1579-1583. https://doi.org/10.1073/pnas.80.6.1579
  7. Hong, S. W., J. S. Lee, and K. S. Chung. 2011. Effect of enzyme producing microorganisms on the biomass of epigeic earthworms (Eisenia fetida) in vermicompost. Bioresour. Technol. 102: 6344-6347. https://doi.org/10.1016/j.biortech.2011.02.096
  8. Ihssen, J., M. A. Horn, C. Matthies, A. Gössner, A. Schramm, and H. L. Drake. 2003. $N_{2}O$-Producing microorganisms in the gut of the earthworm Aporrectodea caliginosa are indicative of ingested soil bacteria. Appl. Environ. Microbiol. 69: 1655-1661. https://doi.org/10.1128/AEM.69.3.1655-1661.2003
  9. Kathrin, F., D. Hanhn, W. Honerlage, and J. Zeyer. 1997. Effect of passage through the gut of the earthworm Lumbricus terrestris L. on Bacillus megaterium studied by whole cell hybridization. Soil Biol. Biochem. 29: 1149-1152. https://doi.org/10.1016/S0038-0717(96)00304-5
  10. Kim, H. J., K. H. Shin, C. J. Cha, and H. G. Hur. 2004. Analysis of aerobic and culturable bacterial community structures in earthworm (Eisenia fetida) intestine. Agric. Chem. Biotechnol. 47: 137-142.
  11. Kim, M. N. and H. J. Bang. 2006. Comparison of culturedependent and DGGE based methods the analysis of marine bacterial community. Kor. J. Environ. Biol. 24: 307-313.
  12. Kim, T. S., H. S. Kim, S. D. Kwon, and H. D. Park. 2010. Analysis of bacterial community composition in waste water treatment bioreactors using 16 rRNA gene-based pyrosequencing. Kor. J. Microbiol. 46: 352-358.
  13. Knapp, B. A., J. Seeber, S. M. Podmirseg, E. Meyer, and H. Insam. 2008. Application of denaturing gradient gel electrophoresis for analysing the gut microflora of Lumbricus rubellus Hoffmeister under different feeding conditions. Bull. Entomol. Res. 98: 271-279.
  14. Kwon, K. R. and J. C. Seo. 2004. Genetical identification of Korean wild ginseng and american wild ginseng by using pyrosequencing method. Kor. J. Herbology 19: 45-50.
  15. Miller, K. M, T. J. Ming, A. D. Schulze, and R. E. Withler. 1999. Denaturing gradient gel electrophoresis (DGGE): a rapid and sensitive technique to screen nucleotide sequence variation in populations. Biotechniques 27: 1016-1018.
  16. Miwa, H., I. Ahmed, A. Yokota, and T. Fujiwara. 2009. Lysinibacillus parviboronicapiens sp. nov., a low-boroncontaining bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 59: 1427-1432. https://doi.org/10.1099/ijs.0.65455-0
  17. Parle, J. N. 1963. Microorganisms in the intestines of earthworms. J. Gen. Microbiol. 31: 1-11. https://doi.org/10.1099/00221287-31-1-1
  18. Park, J. S., C. J. Sim, and K. D. An. 2009. Community structure of bacteria associated with two marine sponges from Jeju Island based on 16S rDNA-DGGE profiles. Kor. J. Microbiol. 45: 170-176.
  19. Parthasarathi, K., L. S. Ranganathan, V. Anandi, and J. Zeyer. 2007. Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates. J. Environ. Biol. 28: 87-97.
  20. Petrosino, J. F., S. Highlander, R. A. Luna, A. G. Richard, and J. Versalovic. 2009. Metagenomic pyrosequencing and microbial identification. Clin. Chem. 55: 856-866. https://doi.org/10.1373/clinchem.2008.107565
  21. Rondon, M. R., R. M. Goodman, and J. Handelsman. 1999. The Earth's bounty: assessing and accessing soil microbial diversity. Trends Biotechnol. 17: 403-409. https://doi.org/10.1016/S0167-7799(99)01352-9
  22. Schleifer, K. H. and O. Kandler. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477.
  23. Shin, K. H., H. Yi, J. S. Chun, C. J. Cha, I. S. Kim, and H. G. Hur. 2004. Analysis of the anaerobic bacterial community in the Earthworm (Eisenia fetida) intestine. Agric. Chem. Biotechnol. 47: 147-152.
  24. Song, E. Y., J. K. Noh, Y. M. Yoon, Y. S. Choi, S. S. Park, E. K. Ra, and K. S. Han. 2006. ABO genotyping by pyrosequencing analysis. Korean J. Blood Transfusion. 17: 106- 115.
  25. Walter, J., G. W. Tannock, A. Tilsala-Timisjarvi, S. Rodtong, D. M. Loach, K. Munro, and T. Alatossava. 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species specific PCR primers. Appl. Environ. Microbiol. 66: 297- 303. https://doi.org/10.1128/AEM.66.1.297-303.2000