SAIMO

AN Ezd ZF

=1
—0 = f

| AR Ao 7[gkel A4 Xoff Alxl=

}jl

dlo

( Effects of Noise Power Uncertainty on Energy Detection for
Spectrum Sensing )

9 3

e

(Chang Heon Lim)

(@] ok
I =

AHEH

o ol A - 3)

AR
e A
e &8
2] (residue

%3} o]
ulg) Asel 2 Irhe bl 7|28 Aelsin,

]
e

aelg
A AE e A
Aol AU Aol

S

theorem)oll 7]¥H8 &

L [e]

sfebg Bt dlek ol of ERAAE f%

O
BAGE 1 29E ANSaA B,

Abstract

In spectrum sensing, an energy detector compares the energy of a received signal with a predetermined detection
threshold and decides whether a primary user is active or not in a licensed frequency band. Here the detection threshold
is related to the noise power level in the band. Most previous works on energy detection have assumed that the noise
power is exactly known a priori. However, this assumption does not hold in practice since there may be some uncertainty
about the noise power. So it is necessary to investigate its effects on the performance of energy detection for spectrum
sensing. In this paper, we analyze the effects using the residue theorem for contour integral and present the associated

o

o

numerical results.
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I. INTRODUCTION

Recently, cognitive radio” has been recognized as
a promising means to implement the concept of
dynamic spectrum access and to resolve the scarcity

of radio spectrum due to the traditional fixed
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spectrum  allocation  policy. In dynamic or

opportunistic spectrum access, a secondary user
should not cause harmful interference to a primary
user in a licensed band and is required to be
equipped with the capability of spectrum sensing to
monitor the activity of a primary user. Cognitive

radio inherently possesses this ability and can be an

appropriate approach for realizing a secondary
terminal.
Most  spectrum  sensing techniquesm may be

classified into three categories which are respectively
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based on matched filtering, energy detection, and
feature extraction. Among these, the energy detection
does not require any prior knowledge of a primary
user signal and is relatively simple to implement,
which has brought about a lot of research work
toward it.

An

threshold on the basis of the noise power in a

energy detector determines a detection
licensed band and is required to be aware of the
noise power there for its successful operation. Most
research efforts on energy detection have assumed
that the noise power is available a priori. However, in
practice, it is difficult to obtain the exact value of the
noise power since several factors such as calibration
error, temperature change, and interference contribute
the noise power uncertainty”™. In [4], Cabric found
that the inaccuracy of the noise power may degrade
the performance of an energy detector significantly.
In [6], Tandra, et al stated that the detection
performance may not improve with increasing the
observation time in case there is some uncertainty
about the noise power. However, the degradation of
the sensing performance which is attributed to the
noise power uncertainty has not been analyzed yet.
In this paper, we assume that an energy detector
estimates the noise power and the associated
estimation error has a uniform distribution. Then we
analyze the effects of the estimation inaccuracy on
the sensing performance of the energy detector in
terms of detection probability and false alarm

probability.
II. SYSTEM MODEL

of
a hypothesis

The problem spectrum sensing can be

formulated as testing with two

hypotheses: one hypothesis H, indicates no active
primary user and the other hypothesis H, represents
the presence of an active primary user. Then the

received signal of a secondary user r(¢) can be
described by

(799)
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w(t) H,

t)= 1

r)=\0s () +wl) A D

where s(t) is the primary user signal, and w(t) is a
bandpass noise confined to the licensed band of

bandwidth W and exhibits zero mean and power

. N
spectral density of — . Also let « denote the

2
amplitude channel gain between a primary user and a
secondary user, which is assumed to be constant
over each transmission period and to have a Rayleigh
distribution.
We assume that an energy detector calibrates the
noise power or equivalently the noise power spectral

density in a licensed band and determines the

N
detection threshold accordingly. Let 70 denote an

estimate of the noise power spectral density. In order
to characterize the uncertainty about the noise power,

we assume that the exact value of the noise power

) N . ) .
spectral density — 1s a random variable with a

2
. C Ny Nyp
uniform distribution over a range 2 2 around
. Mg
the estimate of > where represents the

uncertainty of the noise power and is equal to or
greater than 1. Accordingly, the probability density
function (PDF) fy(n) of NV can be written as

Y A -
() =1 Ny —1) , =N=Ne (@
0 elsewhere
for p> 1 and
fN(N):(S(Nf N()) (3)

for p=1, where §( - ) is the Dirac delta function.
The energy detector is presumed to adopt the
following test statistic X for detection of a primary

userm

X= f;f" (t)dt

where 7 is an observation time.

4)
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II. PERFORMANCE ANALYSIS

1. False Alarm Probability

When the primary user is idle, the received signal
is composed of only the noise component w(t).
When N is given and a time bandwidth product 77W
is approximated by an integer NV, [71’ the test statistic
X follows a gamma distribution with o= ~Ns and
B=N* and its PDF is represented by fy y(z).
Y, we denote its PDF by
fy(y) and its moment generating function (MGF) by

My(z)

For a random variable

@)= [ e ®
(5) allows us to transform the conditional PDF
fxw(z) to the conditional MGF My |y (2) which is

given by [11]

N,

My y(z)= 1+ Nz) ™ (6)

By definition, the conditional false alarm probability

Pryn for a given IV can be expressed as

Ppan= f:ofXW(x)dx (7)

where X 1s a detection threshold. Applying the
contour integral based approach[m] for calculating a
cumulative probability to (7) results in

) exp(\z)

Ppgy=— 27"63 MX\N(Z’ » 210
ky

Nil A" exp(— %)

m—0o N"TI'(lm+1)

where 2, (k0= 1,2,---) are the poles of My y(2)

and I'( -+ ) is the gamma function. As mentioned in

Section II, since NV is assumed to be a random

variable over an interval [70 ,Nop}, we can

produce the unconditional false alarm probability 24

for p>1 by averaging Pp 4y over N as follows:

Mol 224H0| HHX Ao 7|gke] A4

Ed 4Xof mlxles ¥ 2

o

o

Pra = /000 Ppan fn(N)dN
/)2/:1 [F (ﬁ,ﬁ, %)
) IR
- /)2/11 [F (1\% P %)
-G 1\)‘\'0"p %0>
FE] s
9

where E( - ) represents the expectation operator, F

and G are respectively defined as

Fla,b,¢)=1b exp(— g)— ¢ exp(— %) (10)

3 rlet)

with I'(s,z) being the upper incomplete gamma

Gla,b,c,d) = a{F (d, 11

function defined as I'(s,z)= / 7 le7'dt. Note

that P, is reduced to (8) for p=1.

2. Detection Probability

When a primary user occupies a licensed frequency
is described by
Let E, denote the energy of the

band, the received signal r(¢)
as (t) +w(t).

signal s(t) for the observation interval 7. Also let ~y
9

NN,

N and v are given, the conditional MGF My . (2)

of the test statistic X is given by [8] [11]

)

Since the channel between the primary user and the

represent the normalized SNR of . Then, when

NNjyz
(1+NVz)

]L[X\AV,';«(Z) -

exp (12)

(1+nN2)™

secondary user is assumed to be under a Rayleigh
fading, the PDF f.(y) of v must be
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ieXD -2 = Pp = /wPvav(N)fm"
£(0=17 5 7= (13) Jo TR
0 v<0 - [F (. + N3, Lellert)
where ~ is the expectation of ~. Hence, averaging ~i@ (%D o+ N4, ”jim())} N, =1
(13) over v produces My |y (z) given by [11]
Ap A Ne—1
- No(p2—1) (ng,)
Mylz) = /‘,OOJV[X“*“(Z)JEW(V)d7 xC (’\O(Pi{Vs")'q)' A;oui&jsm)"\; + L)
1 (14) - , Ns—2 Ng—m—2
- N1 = : T M) > >
(1+AN2)"  (1+(1+NAy)Nz) m=0 =0
N,—m—2
A2
In general, when N 1is given, the conditional ( l )
X 7T
detection probability 7,y may be expressed as (NoNs7)
! mor ﬁ,;\‘,—‘o’,]—nJrE) _
o X Z(J I'(n+1) ‘\'9 22
Ppiy = / wa(l”)dI' (15)
A (18)
The procedure of obtaining (8) from (7) enables us to . _ E,
convert (15) into where ~ is defined as N, and
Ppy=— Zres My (2) 7exp()\z) z -3 a
DIN — g XNV » Akl Ula,b,c) =a 2exp(—§ W,g 1_C(a)
eXp()\ o _c b v (19)
(1+ NN N, =1 —b 2exp(*E)T/V e 1o (b).
T2 2
1\t A
14— exp|——2 Also, Pp becomes (16) for p=1.
— Ny (1+Ny)N
1 N,—2 1 N,—m—2
- 1+ —=
Ny mzo( Nﬂ) Ny =2 IV. NUMERICAL RESULTS
n A
m A EXP|— =7
N .
= EU N'T(n+1) Here we present some numerical examples of the
(16) analysis in Section II for the case that v=1 dB

where z;, (k1 = 1,2,---) are the poles of My y(2).
Then the unconditional detection probability 72, for
p>1 can be obtained by averaging Ppy over N

and using the following integral formula

v u

/ e@- de=u *e *W , (1_“)(u) u>0
u X e 9
17)
where w. . (+) represents the Whittaker
function™ and is given by

and a desired P, of 10” ' are assumed.
Fig. 1 the

performances of an energy detector in the presence of

plots simulated and analytic

noise power uncertainty for a variety of N,. As seen
in the figure, the false alarm rate achieves the target

value of 10™' for p=0 dB since this case does
not involve any noise power uncertainty. Also, the
false alarm probability is found to increase as p gets
N,

e

Under the hypothesis H,,, the test statistic X for a

higher, which is more prominent for greater

given N has a mean of N,N and a variance of

NN 2 Since N is random, the mean and the

variance of the test statistic X are also random and
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Fig. 1. Effects of noise power uncertainty on the false

alarm performance.
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Fig. 2. Effects of noise power uncertainty on the
detection performance.

their possible values extend over a wider range for a
larger N,. This implies that the false alarm

probability tends to degrade more rapidly for a higher

N, as p increases.

Fig. 2 also illustrates the effects of noise power
uncertainty on the performance of the detection
probability for several values of N,. As is shown,
the detection probability increases at a relatively low

rate as p grows.

o

o

V. CONCLUSIONS

We analyzed the performance degradation of an
energy detector in the presence of noise power
uncertainty. We assumed a uniform distribution for
the noise power uncertainty and presented analytical
forms for the false alarm probability and the
detection probability. This analysis will be a useful

reference for designing an energy detector.
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