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Abstract

Web spam has a significant influence on the ranking quality of web search results because it promotes unimportant
web pages. Therefore, web search engines need to filter web spam. web spam filtering is a concept that identifies spam
pages — web pages contributing to web spam. TrustRank, Anti-TrustRank, Spam Mass, and Link Farm Spam are
well-known web spam filtering algorithms in the research literature. The output of these algorithms depends upon the
input seed. Thus, refinement in the input seed may lead to improvement in the quality of web spam filtering. In this
paper, we propose seed refinement techniques for the four well-known spam filtering algorithms. Then, we modify
algorithms, which we call modified spam fitering algorithms, by applying these techniques to the original ones. In
addition, we propose a strategy to achieve better quality for web spam filtering. In this strategy, we consider the
possibility that the modified algorithms may support one another if placed in appropriate succession. In the experiments we
show the effect of seed refinement. For this goal, we first show that our modified algorithms outperform the respective
original algorithms in terms of the quality of web spam filtering. Then, we show that the best succession significantly
outperforms the best known original and the best modified algorithms by up to 1.38 times within typical value ranges of
parameters in terms of recall while preserving precision.
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pages for the user’'s queries from the WWW,
Googlem, Yahoom, MS Bingm, and Naver® are
popular examples of web search engines.

A web search engine usually returns a huge
amount of relevant web pages for the user’s queryw‘
¥ However, the user wants to browse the most
important ones'”. Thus, the web search engine
arranges the relevant web pages in the order of their
importancem. For this the web search engine utilizes
a ranking method".

Link-based
popular web search engines such as Google,
Yahoo, and MS Bing[w]. These methods exploit the

link structure of web for ranking the search results.

However, the methods suffer from link spam[”],

ranking methods are prevalent in

[2,9~10]

which is the type of web spam that takes advantage
of the link structure of web in order to boost
importance of one or more unimportant web pagesm'
2 In order to filter out link spam, many link spam
algorithms q13-161,

However, the algorithms do not perform well if the

filtering have been propose
seed given to the algorithms is not good because
they are dependent upon the seed. Thus, if the seed
is well refined, the quality of the spam filtering
algorithms will get improved. So far, much research
has been done on the link spam filtering algorithms.
However, research on seed refinement techniques has
been less than adequate.

In this paper, we propose input seed refinement
techniques for four well-known web spam filtering
algorithms i.e,, TrustRank[M], Anti*TrustRank[K’],
Spam Mass[l?’], and Link Farm Spam[w]. The
contributions of the paper are as follows. First, we
propose the modified algorithms for four web spam
filtering algorithms by making use of additional input
seed sets. Specifically, the four web spam filtering
algorithms use at most one type of seed set(either for
spam or non-spam). However, we modify these
algorithms to use both types of input seed sets(i.e.,
seed sets for spam and non-spam) to detect more
web spam. Next, we propose a strategy that arranges
the execution sequence of our modified algorithms in

order to achieve better quality of web spam filtering.
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Finally, we conduct extensive experiments to show
the effect of seed refinement. We first show the
quality improvement of our algorithms compared to
the corresponding original ones. Then, we evaluate
the best succession among our algorithms.

The rest of this paper is organized as follows. In
Section II, we introduce the web graph model,
PageRank, and link spam. In Section III, we introduce
the four well-known web spam filtering algorithms.
In Section IV, we explain our modifications in the
algorithms

successions among them. In Section V, we show the

four  well-known and investigate
results of our evaluation. In Section VI, we conclude

the paper.

II. Preliminary

In this section, we introduce a graph model for
web: web graph model. Then, we explain the
PageRank algorithm, which is a popular link-based

ranking algon'thm[m. Finally, we explain link spam.

2.1. Web Graph Model
Web
G=(V,E) consisting of a set V of web nodes
(vertices) and a set £ of directed links(edges)[m.
Directed links are classified into 7n/inks and outlinks.

Inlinks are those incoming to a web node, and

can be modeled as a directed graph

outlinks are those outgoing from a web node'™, Fig.1
shows an example of a web graph. In this figure A,
B, and C represent web nodes while the arrows
represent the links. E and ?C’ are the outlinks of
the web nodes A and B, respectively. E’) and B—O)
inlinks of the web nodes B and C

respectively.

are the

The web graph can be classified into two classes:

V=1{4,8,C}
E- {4, BC)

ﬁis an outlink of the web node 4
B_C’is anoutlink of the web node B
ABis aniinlink of the web node B
BCis aninlink ofthe web node C

I3 1. @ JeiEo o
Fig. 1. An example of a web graph.
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page-level and domain-level web graphsua' U P

page-level web graph, a web node represents page
information(e.g., cnn.com/index.html), and a directed
link represents a link(ie, URL) contained in a web
page. In a domain-level web graph, a domain(e.g.,
cnn.com) of web pages is represented by a web node,
as a link represents all the inlinks or outlinks to or

[18] In

from this domain from or to another domain
addition, algorithms on a domain-level web graph are
more scalable compared to a page-level web graph,

and the well-known web spam filtering algorithms™~

1415 yse domain-level web graphs.

2.2. PageRank

PageRank[Q‘ 7 is a well-known link-based ranking
algorithm that exploits the link information to assign
global importance score to the entire web ™ 14 The
basic idea of PageRank is that a web page is
important if it is inlinked by many other pages. The
PageRank score of a web page is computed as in

Eq.(D":
) PR[q]

q:(¢g.p)EE ]voutlink‘(q)

PRlpl=d - +(1—d) « vlp] (1)

In Eq.(1), PRIpl denotes the PageRank score of the
web page p; d is the damping factor, which is the
probability of following an outhnk; MNouimg 1S the
number of outlinks of the web page ¢ Wpl is the
probability that a user randomly jumps from p to any
arbitrary web page. The probability is uniform and is
defined as reciprocal to the total number of web
pagesm]. The PageRank algorithm can be applied to
rank domains by using a domain-level web graph in

place of a page-level web graphug].

2.3. Link Spam
Web spam is a deliberate action performed in order

to boost a web page’s ranking without improving its

[11, 15, 20]

real merit Link spam is an action that

changes the link structure of web in order to boost a

i Fig.2 shows an example of

web page’s ranking
link spam.

In this figure, there are eleven domains from DI to

(69%)
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Fig. 2. An example of link spam.

D11. The domains 3 to I contain pages that
outlink to pages of the domain D1. This link
structure is created in order to provide undue
advantage to the pages of the domain DI, ie., to
make those pages look mmportant because they are
inlinked by many pages of different domains. The
domains D1 and 3 to DB are involved in web spam.
However, the domains 22, 79, D10, and D11 are not
participating in web spam. The domains that are
involved in web spam are known as spam domains

while the rest are known as non-spam domains.

III. Related Work

In this section, we review four well-known web
spam filtering algorithms. In Section 3.1 we present a
brief overview of classification(i.e., seed generators
and spam detectors) of the four well-known
algorithms. In Section 3.2 we describe TrustRank
that

Anti-TrustRank that demotes spam domains as seed

promotes non-spam domains and
generators. In Section 3.3 we describe Spam Mass

and Link Farm Spam, which are spam detectors.

3.1. Overview

Web spam filtering is an action to identify web
spam. To achieve this goal, existing work makes use
of the link structure of web, manually declared spam
or non-spam domains(simply, the input seed set), and
additional

non-spam domains. Research on web spam filtering

information for declaring spam or

i1s classified into two approaches: one of evaluating
badness(or goodness) of domains by using only the

input seed set and the other of identifying spam
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domains by exploiting additional properties of web
spam. It is well known that, though the former can
identify web spam, the quality of the results is
[13, 15]' The

domains than the former because it adopts techniques

insufficient latter detects more Spam
uncovering boosting activity explained in Section 2.3.
However, the former may help generate the refined
input seed set, which can be used as the input of the
latter. We expect that the refined input may help
improve the quality of web spam filtering. Based on
this expectation, we classify web spam filtering
algorithms

generation algorithms(simply, seed generators) and

into two types of algorithms: seed

spam detection algorithms(simply, spam detectors).
3.2. Seed Generation Algorithms

3.2.1. Trust Rank

TrustRank ™" exploits the outlink information of
trusted domains, which are defined as well-known
non-spam domains such as .gov and .edu. TrustRank
begins by taking as the input a seed set of
non-spam domains. Then, it propagates trust scores
of the non-spam domains to the outlinks of the
domains while attenuating by the damping factor as
defined in Section 2.2. Finally, a threshold value is
chosen, and all domains whose trust scores fall above

this value are declared as new non-spam domains.

3.2.2. Anti—Trust Rank

Anti- TrustRank"” exploits the inlink information
of the spam domains that are provided as the input
seed. Anti-TrustRank propagates anti—trust scores of
the spam domains to their inlinks(.e., in the reverse
direction) while attenuating by the damping factor.
Finally, a threshold value is chosen, and all domains
whose anti-trust scores fall above this value are

declared as new spam domains.
3.3. Spam Detection Algorithms

3.3.1. Spam Mass

[13]

Spam Mass exploits both the scores coming

oz
)
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M The spam

from spam and non-spam domains
score is estimated by subtracting the non—spam score
from the overall score. TrustRank is used to calculate
the non-spam score, and the overall
calculated by PageRank. The basic assumption of this

algorithm is that a spam domain usually gets a high

score 1S

score from suspicious domains, which are not trusted
by TrustRank. Under the assumption, this algorithm
declares a domain that receives excessively higher
PageRank score compared to the trust score as a

spam domain.

3.3.2. Link Farm Spam

1161 exploits bidirectional links and

Link Farm Spam
outlinks of domains. That is, if a domain has many
bidirectional links or many outlinks to spam domains,
the domain is declared as a spam domain. Link Farm
Spam begins by finding bidirectional links among
domains and marks a domain as a spam if the
number of bidirectional links of the domain is equal
to or greater than a given threshold. Then, the
algorithm attempts to find more spam domains by
observing outlinks and marks a domain as a spam if
the number of its outlinks to spam domains is equal
to or greater than another threshold. We denote the
threshold dealing with bidirectional links by /ZimitBL
and that dealing with outlinks by ZimitOL.

IV. Input Seed Refinement for Web Spam
Filtering Algorithms

In this section, we propose modifications of four
web spam filtering algorithms. We also propose a
the

execution sequence) of our modified algorithms in

strategy for determining the succession(i.e.,
order to get better quality of web spam filtering.

4.1. QOverview

The objective of seed refinement for web spam
filtering is to improve the quality of web spam
filtering. Specifically, the objective is to maximize the
correct detections over the total detections(simply,

21])

precjsjoz; , to maximize the fraction of the correct
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detections over entire Spam or non-spam
population(simply, recal ZU), or both.

In Section I, we have observed that the existing
spam filtering algorithms depend on the input seed
set. However, they utilize only one type of the input
seed set belonging to either spam or non-spam seed
domain. Thus, if both types are provided as input
seed sets to the algorithms, it may improve the
quality of web spam filtering. Furthermore, an output
from one algorithm can become the input to the other
algorithm. Thus, the effective succession between

these algorithms may lead to further improvement.
4.2. Seed Generation Algorithms

4.2.1. Modified TrustRank

TrustRank takes as the input seed set a set of
trusted domains. This algorithm may promote spam
domains since trusted(ie., non-spam) domains can
outlink to spam domains. For example, a trusted
university domain may outlink to a student’s domain
which may in turn outlink to a honey pot*. In Fig.3,
the domain 1 represents the university's domain, the
domain 3 represents the student’s domain, and the
domains 5 and 6 are the part of a honey pot.

In Fig.3, we observe that the spam domains 5 and
6 receive high trust scores because the domain 3 is
deceived by the domain 5. In order to overcome this
potential shortcoming caused by outlinking from a
non-spam domain to a spam domain, we add another

seed set of known spam domains, which serves as an

16)=5/12 + O a domain being considered

1(i): the trust score of the domain i
The domains 5 and 6 are
involved in web spam.

(4)=113

ozl 3 2™ Toeld =2 Mz HfE Foists
TrustRanke! of
Fig. 3. An example of TrustRank giving high trust

scores to spam domains.

" Honey pot is a set of pages which provide some
useful information(e.g., Unix documentation pages)
but have hidden outlinks to spam pages[20].

(697)
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Input:
a seed set of non-spam domains N
a seed set of spam domains §
the threshold cutoff
the difference threshold ¢
web graph G= (V, E)
Output:
a set of non-spam domains Oy
trust score vector of all domains T, 4ereq

Algorithm:

1. FOREACHd €V
2. IFd ENTHEN

3 Told) = size(N)
4. ELSE

5. Told]=0

6. i=0

7. DO

8. FOREACHdJd €V
9. FOR EACH (d, q) €E
1

0. IF ¢ &S THEN
Tivilq] = Tivilq] + damp -
FOR EACHd €V
Ti+i[d) = Tisild] +(1—damp).Ti{d]
A=|Ti-T;|
i=i+1
16. UNTILA<g
17. Torgerea = Sort T;4; by trust scores in the descending order
18. Oy = the set of domains with highest trust scores within cutoff’
19. Remove domains whose trust score = 0 from Oy
20. RETURN Oy, Tyrdered

Ti[d]
Naurlmk(d)

=
Fig.

4. FHE TrustRank I2|&
4. Modified TrustRank algorithm.

exception list, so that the links to the spam domains
do not contribute to the trust scores of the domains.
Fig.4 shows the algorithm of Modified TrustRank.
Inputs to the algorithm are a set of non-spam
domains /, a set of spam domains S, the threshold
value cutoff the difference threshold & and web
graph (. Hereafter, we use these inputs for other
algorithms as well unless we explicitly specify
different inputs. The output is a set of non-spam
domains Oy and the trust score vector of all domains
Tordgera. ' The threshold cutoff is used for determining
the non-spam domains at the end of the algon'thmm'
15 This threshold is defined relative to the size of
the non-spam input seed set so that top cutoff
percent of domains with the high trust scores are
declared as non—spam domains. For example, if cutoff
= 100%,

non-spam domains is equal to that of the non-spam

the number of domains declared as
seed set under the ideal assumption that every
domain declared as non-spam has a non-zero trust
score because the score is affected by trust scores
propagated from the non-spam seed set. We define

this case as the base case for TrustRank and
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Modified TrustRank. In fact, the size of domains
declared as non-spam domains is less than or equal
to that of the non-spam seed set because we remove
the domains whose trust score = 0 from the domains
declared as non-spam. Compared with original
TrustRank algorithm, the modified algorithm
additionally gets the set of spam domains S as an
input seed set and uses it for preventing scores of
non-spam domains from propagating to
domains(lines 10-11). The algorithm first initializes

the trust scores of all domains by assigning a

Spam

uniform value 1/size(N) to every non-spam domain
N and zero to the rest of domains(lines 1-5). Then, it
iteratively calculates trust scores until the difference
between the two consecutive trust score vectors is
less than e&(lines 7-16). Specifically, the algorithm
uniformly distributes trust scores of domains to their
outlinks pointing to all domains except spam domains
while taking the damping factor into account(lines
8-11). Here, MNouin{d) represents the number of
outlinks of the domain dline 11). Then, the algorithm
assigns the random jump value to all domains
according to their trust scores(lines 12-13). All the
domains are arranged in the descending order of their
trust scores(line 17), and then, the algorithm picks
domains with the highest trust scores that are
determined by cufoff defined earlier and adds the
domains to Online 18). Then, the domains with a
zero trust score are removed from Online 19).
Finally, the algorithm returns Oy and Zoeredline 20).

4.2.2. Modified Anti—TrustRank
Anti-TrustRank takes as the input seed set a set
The

non-spam domains that point to spam domains such

of spam domains. algorithm may demote
as honey pots as mentioned in Section 4.2.1.

Fig.5 the algorithm of  Modified
Anti-TrustRank. The output is a set of spam
domains Os and the anti-trust score vector of all
domains A7Zirdere. The threshold cutoff is used for
determining the spam domains at the end of the
algon'thm[l‘f’]. This threshold is defined relative to the

shows

size of the spam input seed set so that top cutoff

TUE!
oz
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Input:
a seed set of non-spam domains N
a seed set of spam domains §
the threshold cutoff
the difference threshold A
web graph G= (V, E)
Output:
a set of spam domains Os
anti-trust score vector of all domains AT, ereq
Algorithm:
. FOREACHd €V
IF d &S THEN

1

ATy[d] = ———

old] si22(5)
ELSE

1
2

3

4

5 AT)[d] =0

6. i=0

7. DO

8. FOREACHdJ €V

9 FOR EACH (¢ .d) €E
1 IF ¢ €N THEN

ATi\[q] = AT: + [q]+ damp -

FOR EACHd €V
ATi +1[d] = AT: +1[d]+ (1 - damp) - AT{d]
A=|AT; - AT;|
15.i=i+1
16. UNTILA<g
17. AT prderea = Sort AT;y; by anti-trust scores in the descending order
18. Os = the set of domains with the highest anti-trust score within cutoff’
19. Remove domains whose anti-trust score = 0 from Oy
20. RETURN Os, ATorderea

AT{[d]
Niniink(d)

=)
Fig.

5 FH™E Anti-TrustRank &12|&
5. Modified Anti-TrustRank algorithm.

percent of domains with the high anti-trust scores
are declared as spam domains. For example, if cutoff
= 100%, the number of domains declared as spam
domains is equal to that of the spam seed set under
the assumption similar to what we made in Section
42.1 except that this assumption is based on the
spam seed set and anti-trust score. We define this
case as the base case for Anti-TrustRank and
Modified Anti-TrustRank. Compared with original
Anti-TrustRank algorithm, the modified algorithm
additionally gets the set of non-spam domains NNV as
an input seed set and wuses it for preventing
anti-trust scores of spam domains from propagating
to non-spam domains(lines 10-11). The proposed
algorithm first initializes the anti-trust scores of all
domains by assigning a uniform value 1/size(.9) to
every spam domain S and zero to the rest of
Then,

anti—trust scores until the difference between the two

domains(lines 1-5). it iteratively calculates

consecutive anti-trust score vectors is less than ¢
(lines 7-16).

distributes anti—trust scores of domains to their

Specifically, the algorithm uniformly

inlinks pointing to all domains except non-spam

domains while taking the damping factor into
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account(lines 8-11). Here, MNuiu{d represents the
number of inlinks of the domain dline 11). Then, the
algorithm assigns the random jump value to all
domains according to their anti-trust scores(lines
12-13). All the domains are arranged in the
descending order of their anti-trust scores(line 17),
and then, the algorithm picks domains with the
highest anti-trust scores that are determined by
cutoff and adds the domains to O«line 18). Then,
domains with a zero anti-trust score are removed
from O«line 19). Finally, the algorithm returns Os
and A Trgeredline 20).

4.3. Spam Detection Algorithms

4.3.1. Modified Spam Mass

Spam Mass uses TrustRank for determining spam
domains so it suffers from the same problem as
explained in Section 4.2.1. Thus, we substitute
Modified TrustRank in place of TrustRank for
performing Modified Spam Mass. Fig.6 shows the
algorithm of Modified Spam Mass. Inputs to the
algorithm are a set of non-spam domains /N, set of
spam domains S, the threshold value fopPFE, the
threshold value refativeMass, the difference threshold
g and web graph (. The output is a set of spam
domains Os The threshold topPR represents the
minimum PageRank score of a domain so that the
domain is considered as a candidate for web Spam[m.
The threshold relativeMass is defined as the ratio of
the spam score to the overall score as explained in
Section 3.3.1. It is used for deciding a domain as a
spam domain so that, if the domain receives
excessively higher spam score compared to non-spam
score, the domain is a candidate for web spamug].
While original Spam Mass algorithm calls original
TrustRank for computing trust scores for all
domains, the modified algorithm first initializes two
vectors of trust scores and PageRank scores by
TrustRank and  PageRank,

respectively(lines 1-2). Then, a domain is declared as

using  Modified

a spam if it meets two thresholds constraints, fopPR

and relativeMass(lines 3-6). First, a domain should

Input:

a seed set of non-spam domains N

a seed set of spam domains .S

the threshold topPR

the threshold relativeMass

the difference threshold A

web graph G= (V, E)

Output:

a set of spam domains Os

Algorithm:

1. Ow, T=Modified TrustRank(N, S, cutoff, A, G)

2. P =PageRank(A, G)

3. FOREACHd €V

4. IF P[d]> topPR THEN

5 IF Pd1-T1d] > relativeMass THEN
Pld]

6. Os«—Os U {d}

7. RETURN Os

a2l 6. XM= Spam Mass €X2|&
Fig. 6. Modified Spam Mass algorithm.

have at least topPR PageRank score to be considered
as a spam(line 4). Second, the domain also should
have a fractional value higher than or equal to
relativeMass(line 5). Here, the fractional value of a
domain is defined as the ratio of the difference
between its PageRank score and its trust score to the
PageRank score. If a domain satisfies the two
constraints, the domain is added to O«line 6). Finally,
algorithm returns Os(line 7).

4.3.2. Modified Link Farm Spam

Link Farm Spam does not take any input seed.
However, we argue that the input seed set of spam
and non-spam domains would improve the quality of

its spam filtering. That is, a seed set of non-spam

Input:
a seed set of non-spam domains N
a seed set of spam domains §
the threshold limitBL
the threshold /imitOL
web graph G= (V, E)
Output:
a set of spam domains Os
Algorithm:
1. Os«S
2. FOREACHd €V
3 IF d #N THEN
4. I=inDomain(d) — N — {d}
5. O = outDomain(d) — N — {d}
6 IF size( I N O) > limitBL THEN
7. Os—Os U {d}
8. DO
9. Oua+Os
10. FOR EACHd €V
11. IF d <N THEN
12. O = outDomain(d) N Os
13. IF size(O) > limitOL THEN
14. Os —Os U {d}
15. UNTIL size(Os) > size(Opia)
16. RETURN Oy

a2l 7. #=H™E Link Farm Spam £12|&
Fig. 7. Modified Link Farm Spam algorithm.
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domains allows us to minimize Wwrong spam
detections such as well-known trusted domains(.e.,
gov, .edu, etc.), and a seed set of spam domains
would help in identifying more spam domains.

Fig.7 presents the algorithm of Modified Link Farm
Spam. Inputs to the algorithm are a set of non-spam
domains A, a set of spam domains S, the threshold
value /ZimitBL(defined in Section 3.3.2), the threshold
value /JmitOL(defined in Section 3.3.2), and web
graph (. The output is a set of spam domains Os
Compared with original Link Farm Spam algorithm,
the modified algorithm additionally gets the two sets
of non-spam domains /N and spam domains S as
input seed sets and uses them (lines 1-11). The
algorithm first initializes Os with Sline 1). Then, the
algorithm considers domains as spam domains if they
have many bidirectional links with the domains that
are not included in non-spam domains given as the
seed(lines 2-7). Here, non-spam domains are not
considered as spam domains although they have
bidirectional ~ links(line  3).  inDomairn(d)

represents the set of domains pointing to the domain

many

dline 4), and outDomaird) represents the set of
domains pointed by the domain dline 5). The domain
d is considered as a spam domain(line 7) if the
After
finding spam domains Os due to bidirectional links,
the algorithm additionally declares the domains that
outgoing links Os spam
9-14). This process(lines 9-14)
no more spam domain can be
found(line 15). Finally, the algorithm returns Osline
16).

constraint for /ZmitBL is satisfied(line 6).

have many to as
domains(lines

continues until

4.4. Successions of Web Spam Filtering
Algorithms
In this section, we present successions among
Modified TrustRank(A/7F), Modified Anti-TrustRank
(MATR), Modified Spam Mass(ASM), and Modified
Link Farm Spam(AMLES). We first introduce the
global view of successions among web spam filtering

algorithms; then, we present the possible successions.
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4.4.1. Global View of Successions

Seed generators are not pure spam detection
algorithms; instead, they promote and demote spam
and non-spam domains as discussed in Section 3.
Therefore, we believe that M7TR and MATR can
help generate refined input seed sets. Since spam
detectors require input seed sets with better quality
for their operations, seed generators could provide
good imnput seed sets if they come in succession. In
the seed generators, our concern is how to precisely
determine the seed sets of spam and non-spam
domains whereas, in the spam detectors, our concern
1s how to correctly detect spam domains.

Our strategy is to execute the succession of seed
generators(M7R and MATR) and that of spam
detectors(MSM and MLFS) in turn. The input to the
former succession of seed generators is lists of spam
and non-spam domains, which are manually labeled.
We call

non-spam seed domains. The output of the former

these domains the manual spam and

succession is the input of the latter succession for
spam detectors. We call the output the refined spam
and non-spam domains. Finally, the output from the
latter succession is a list of spam domains detected.
We call these spam domains the detected spam
domains. In Sections 4.2.2 and 4.2.3, we explain the

successions inside each class.

4.4.2. Possible Successions inside the Seed
Generator

The possible successions between M7TFE and

Succession 1 (MATR-MTR) Succession 2 (MTR-MATR)

Manual spam and non-spam seed domains

Seed
Generator

Refined spam and non-spam seed domains

(> Algorithm

=
Fig.

8. AlE dMI|Ljo M2l JHsSt Q
8. Possible successions inside the seed generator.



ES

2011E 11 MXSEe =

Succession 1 (MLFS-MSM) Succession 2 (MSM-MLFS)

Refined spam/non-spam seed domains Refined spam/non-spam seed domains

MSM

Spam
domainsand
refined non-
spam seed
domains

Spam
domainsand
refined non-
spam seed
domains

Spam

Spam

Detector Detector

Detected spam domains

Detected spam domains

> Algorithm

O Class

— Data flow

23 EX[T|ol Mol ThsEh ¢

Possible successions inside the spam detector.

MATR for the seed generator are shown in Fig.8. In
Succession 1, we run MATR followed by MTR
(MATR-MTR);
followed by

in Succession 2, we run MITR
MATR(MTR-MATR). Under both
successions, the manual spam seed domains are
refined by MATR while the manual non-spam seed

domains are refined by M7TFE.

4.4.3. Possible Successions inside the Spam
Detector

The possible successions between MSM and
MLFS for the spam detector are shown in Fig9. In
Succession 1, we run MLFS followed by
MSMMLFS-MSM); in Succession 2, we run MSM
followed by MLESMSM-MLEFS). Under both
successions, we use the refined spam and non-spam
seed domains as the input seed set. Here, we perform
two more tests using single algorithms, ie., MLFS
and AMSM, using the refined spam and non-spam
seed domains as the input seed set, to investigate the
effect of the succession of spam detectors. Table 1

shows the two types of tests for the spam detector.

=X H 48 # Cl © H 6

E 1. 2™ EXJIE fE HAE
Table 1. Tests for the spam detector.
Single Algorithms
MLFS-MSM MSM-MLFS MLFS MSM

V. Performance Evaluation

In this section, we evaluate the effectiveness of our

(701)

3 131

modifications over the original four web spam
We also the

effectiveness of the successions of the modifications

filtering  algorithms. evaluate

and find the best one from those successions.

5.1. Experimental Data and Environment

We use two sets of experiments. In the first set,
we show the effect of refining seed for four web
spam filtering algorithmsug’ 14, 15, 16] by comparing the
original algorithms with our modified algorithms. In
the second set, we show the effect of arranging the
execution sequence among our modified algorithms.
To achieve this goal, we get all the possible
successions of the modified algorithms on the basis

of the classification explained in Section 4.4. Then,

we find the best succession. Finally, we show the
— = = >
E 2 oM vjust ¢n2|E
Table 2. Algorithms compared in the experiments.
Symbol Description
TR TrustRank
Original ATR Anti-TrustRank
algorithms SM Spam Mass
LFS Link Farm Spam
MTR Modified TrustRank
Modified MATR Modified Anti-TrustRank
algorithms MSM Modified Spam Mass
MLFS Modified Link Farm Spam
£ MATR-MTR Modified Anti-TrustRank followed by Modified TrustRank
th e 2 MTR-MATR Modified TrustRank followed by Modified Anti-TrustRank
ale orithms MLFS-MSM Modified Link Farm Spam followed by Modified Spam Mass
8 MSM-MLFS Modified Spam Mass followed by Modified Link Farm Spam
E 3 48 9

Table 3.  Summary of the experiments.

Sets of the .
. Experiments Parameters
Experiments
. cutoffy, 0% - 160%
Exp. 1 Comﬁ;r;i‘;“;?:ee" ratiog, 10%, 50%, 100%
damp 0.85
Comparisons for Comparison between cutoffyr, 0% - 1600%
showing the Exp. 2 ATR and MATR ratior,, 10%, 50%, 100%
effect of damp 0.85
refining seed set Comparison between relativeMass 0‘707 1'00 >
Exp. 3 SM and MSM topPR 10%, 50%, 100%
damp 0.85
Exp. 4 Comparison between limitBL 2-7
LFS and MLFS limitOL 2-7
Finding the best cutoffr, 50% - 160%
Exp.5 succession for the cutoffyr. 50% - 350%
seed generator damp 0.85
cutoffr, 110%
cutoffr, 182%
Finding the best relativeMass | 0.7—0.99
Comparisons for [ Exp. 6 succession for the topPR 100%
showing the spam detector limitBL 2
effect of limitOL 2
ordering damp 0.85
executions cutoffy, 110%
Comparison among cutoff,r, 182%
the best succession, relativeMass 0.7-0.99
Exp. 7 the best known topPR 100%
algorithm, and best limitBL 2
modified algorithm limitOL 2
damp 0.85
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quality improvement in web spam filtering of the
best succession over the best modified and the best
known original algorithms. Table 2 summarizes the
algorithms that we compare in the experiments, and
Table 3 summarizes the experiments.

In all the experiments, we use the public data set
of UK-2006 domains™. The data set consists of
7473 domains labeled as either spam or non-spam
while the rest of 3929 domains are unlabeled. The
labeled data set is classified into two disjoint sets in
order to perform evaluation™: Seed Set is the input
seed set for the algorithms shown in Table 2, and
Test Set is the universal set of domains that are
used for computing the quality(.e., precision and
recall) of the outputs obtained from the algorithms.
In addition, in order to enhance the quality of web
spam filtering, we label more spam and non-spam
domains by using the well-known labeling rule™ ¥~
15 22], and then, add them to Seed Set. That is, we
label domains that contain spam terms in their
domain name(e.g., mp3, mortgage, and sex) as spam
domains. We also label trusted administrative and
.ac.uk,

police.uk) as non—spam domains.

educational ~ domains(e.g., govuk, and

Table 4 summarizes the characteristics of the data
set in terms of domains and web pages. This data
set has Dbeen prevalently used for web spam
ﬁlten'ng[g’ L2751 Table 5 shows Seed Set and Test
Set for the data set. “Before Additional

Labeling” represents the original seed set shown
- [22]
in

Here,

. “After Additional Labeling” represents the input

E 4 Zoeln ¥ mo|X| ool REte| EM[22]
Table 4. Characteristics of the data set in terms of
domains and web pages[22].
Domains Web pages
Labeled Spam 1,924
Non-spam 5,549 s
Unlabeled UZk::in 3,929 Total 77.9 Million
Total 11,402
E 5 AE % HAE dlole HEtel EF

Table 5. Classification of the data set as Seed Set and
Test Set.

Seed Set
After Additional
Labeling [3, 12, 13, 17]
737

Before Additional
Labeling [7]
674
4,948

Test Set [7]

1,250
601

Labeled Spam Domains
Labeled Non-Spam Domains

7,306

(702)
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seed set augmented by using the rules explained
above. Hereafter, labeled spam domains of “After
Additional Labeling” in Seed Set are called Spam
Seed Set, and labeled non-spam domains of “After
Additional Labelling” in Seed Set called
Non-Spam Seed Set. We conduct all the experiments

using a Linux 2.6 system with a Pentium Core2Duo

are

3.0 GHz processor and 3.0 GBytes of main memory.

5.2. Experimental Measures and Parameters

In order to evaluate the quality of the algorithms
shown in Table 2, we use two well-known measures:
1 In all the algorithms other

than 7R and MTR, precision means how accurately

precision and recall

an algorithm detects spam domains from Test
Set(i.e, the ratio of the number of spam domains
collected from Test Set to that of domains collected
from Test Set), and recall means how large a portion
of spam domains the algorithm detects from Test
Set(i.e., the ratio of the number of spam domains
collected from Test Set to that of spam domains in
Test Set). In 7R and M7R, because the two
algorithms detect non-spam(.e. trusted)

precision and recall are defined in the same way as

domains,

explained above except that they are defined in terms
of the non-spam domains. Table 6 summarizes input

parameters for the experiments.

v

Z 6 AF melolH
Table 6. Parameters used in the experiments.

Parameters Description

It is a parameter used in TR, MTR, ATR, and MATR for representing the
probability of following an outlink.
It is the ratio for determining the input seed set in TR, MTR, ATR, and MATR.
Specifically, from Spam(or Non-Spam) Seed Set, we retrieve domains whose
PageRank scores are larger than or equal to the PageRank score of top-
ratior,,% domain among the entire domains, and then, use the retrieved
domains as the input seed set.

It is the cutoff threshold explained in Section 4.2.1. It is used in 7R and MTR
for determining a domain as a candidate of being non-spam.

It is the cutoff threshold explained in Section 4.2.2. It is used in ATR and
MATR for determining a domain as a candidate of being spam.

It is the threshold used in SM and MSM for determining a domain as a spam
such that, if the ratio of the spam score(i.e., PageRank—trust score) of a
domain to the overall score(i.e., PageRank score) of the domain is larger than
or equal to relativeMass, the domain is a candidate for being web spam.

It is the threshold used in SM and MSM for determining the candidates for
being web spam by comparing the PageRank score of a domain to be within
the top percentage(i.e., topPR%) of PageRank scores.

It is the threshold used in LFS and MLFS for determining a domain as a spam
if the number of bidirectional links of the domain is equal to or greater than
this threshold.

It is the threshold used in LFS and MLF'S for determining a domain as a spam

damp

ratio Top

cutoffy,

cutoff g,

relativeMass

topPR

limitBL

limitOL if the number of outlinks of the domain pointing to spam domains is equal to

or greater than this threshold.
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5.3. Experimental Results

In Section 531, we show the results of the
comparisons between the original web spam filtering
algorithms and our modified algorithms. In Section
532, we show the results of the comparisons

between the possible successions of our algorithms.

5.3.1. Comparisons between original and
modified algorithms

Exp. 1: comparison between 7R and MTR

Figs.10 and 11 show the results as ration, is
varied: 10%, 50%, and 100%. Here, we choose the
value range of cutoffiy so that 7K and M7TF declare
all domains in Test Set as candidates of being
non-spam domains at the high end of the value
range (i.e, we choose the value range of cutoffyy by
considering the base case for TR and MTR as
mentioned in Section 2). We use Spam Seed Set and
Non-Spam Seed Set. Then, as explained in Table 6,
we obtain the input seed sets for the trusted domains
from Non-Spam Seed Set as ration, is varied.
Hereafter, we use the two seed sets, Spam Seed Set
and Non-Spam Seed Set, as the input seed sets
unless otherwise specified. We set the damping factor
to 0.85, which is considered as the standard™® %,
Hereafter, the damping factor is fixed for every
experiment that needs it.

Figs.10 and 11 show that M 7R performs slightly
better than 7F. In both Figs.10 and 11, precision and
recall of MTR is overall higher than those of 7F in

the range where cutoff<110%. From the starting

Precision

Precision

0%%%% -

100
cutoff;, (%)

(a) ratioy,,= 10%.

100
cutoffr, (%)

(b) ratio,o, =50%

MTR e TR

Precision
v % % -

0% 2,92,

100
cutoff;, (%)

(c) ratioyq, = 100%

a3
Fig.

10.
10.

ratiorp?l 3ol e FEe
Precision as ratiory is varied.
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Recall

% %% -
Recall

0% %% % 7

0%

100
cutoffy, (%)

100
cutoffy, (%)

(a) ratioy,,= 10% (b) ratio;q,=50%

Recall

0090706'00 7

100
cutoffr, (%)

(0) ratio;o, = 100%

37 11 ratiop,?l Wstol| e M
Fig. 11. Recall as ratiory is varied.
point where cutoft;; > 110%, precision start

decreasing sharply to the lowest as shown in
Fig.10(c). The lowest point of precision is the point
where almost every domain is marked as non-spam
due to the high value of cutoff. Thus, from this
point, increase in the value cufoff;; would bear no
change in recall while only decreasing precision.
Therefore, all the points where precision is the
lowest are insignificant for comparison.

From Figs.10 and 11 we observe ratior,=100%
provides higher recall and comparable precision
compared to other ratior,, values. Thus, hereafter, we
the 100%.  When

ration,,=100% as shown in Fig.10(c), we observe that

fix value of ration, as
the effective cutoffyy value is 1102 since from that
point onwards precision sharply decreases. When
cutoft;=110% in Figs.10(c) and 11(c), the precision of
MTR is better than that of 7F while the recall of
MTR is the same as that of 7K. the precision of
MTR is 0.83, the precision of TR is 0.79, and their
recalls are 0.27. Thus, we conclude that M7TFE is

better than 7F.

Exp. 2: comparison between A7K and MATR

Figs.12 and 13 show the results comparing the
ATR with the MATR. Here, we choose the value
range of cutoflizy so that ATR and MATR declare all
domains in Test Set as candidates of being spam
domains at the high end of the value range (ie., we
choose the value range of cutoffizx by considering
the base case for ATR and MATR as mentioned in
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13.
13.

ratiorp?l st e e
Recall as ratiory is varied.

Section 2). As explained in Table 6, we obtain the
input seed sets for spam domains from Spam Seed
Set as ration, is varied. In both Figs.12 and 13 we
observe that MATR reaches the maximum recal/
much earlier than A7FK. That is why the point of
sharp decrease in precision(and increase in recall)
also occurs earlier in MATR compared to ATR, as
can be seen in above Figs.12 and 13(b) and (c). For
a similar reason to that of Experiment 1, before this
sharp decrease in precision, we observe comparable
precision and better recall for MATR compared to
ATR. We also see that, due to the same reason as
explained in Experiment 1, the lowest points of
precision shown in Fig.12(c) are insignificant for
comparison.

Hereafter, we fix the value of ratiorn, at 100% for
same reason as mentioned in Experiment 1. When
ratiorn,,=100% as shown in Fig.12(c), we observe that
the effective cutofliz- value is 182% since from that

point onwards precision sharply decreases. When

A
oz
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cutoffy7=182% in Figs.12(c) and 13(c), the recall of
MATR is better than that of A7FK while the
precision of MATR is the same as that of A7R: the
recall of MATR is 0.34, the recall of ATR is 0.24,
and their precisions are 0.99. Thus, we conclude that
MATR is better than ATR.

Exp. 3: comparison between SM and MSM

Figs.14 and 15 show the results comparing SM
with MSM. In each figure, (a)-(c) show the effect of
spam detection as fopPR is varied: 70%, 85%, and
100%. B of  SM chooses an
arbitrary low topPR value(approximately 1.2%) since

The original paper

the authors assume that spam domains have high(.e.,
top—1.2%) PageRank values with high probability.
However, we choose high values of topPR to

investigate all domains and precisely determine
whether or not a domain is a spam domain. Here, we
vary relativeMass from 0.7 to 1.0. As explained in

Section 3.3.1 and Table 6, we can have a chance to

MSM  weeenenne

Precision
Precision

08 085

relativeMass

(a) topPR=70%

09 08 08 09

relativeMass

(b) topPR=85%

Precision

08 0.9

relativeMass

(c) topPR=100%

J2 14, fopPRe| Hsto| w2 HEt:
Fig. 14. Precision as fopPR is varied.
MSM  weevees SM MSM  weseneeee SM
§ 2@ ‘\j § lb A\j
© 0.7 0.75 0.8 0.85 0.9 0.95 1 © 0.7 0.75 0.8 0.85 0.9 0.95 1
relativeMass relativeMass
(a) topPR= 70% (b) topPR=85%
0.7 0.75 0.8 0.85 0.9 0.95 1
relativeMass
(c) topPR=100%
a2l 15, fopPRe| Hstol| w2 AsHE
Fig. 15. Recal as fopPR is varied.
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precisely detect actual spam domains as the value of
1.0 the

represents the maximum effective degree of spam

relativeMass  approaches since value

domains contributing to a domain. We do not
consider the case that the value is smaller than 0.7
because, at this range, precision decreases while
recall preserves or increases trivially. Existing work
the value that
0.7(specifically, 0.93 "),

Figs.14 and 15 show that AMSM performs slightly
better than SAZ In both Figs.14 and 15 the precision
and recall of MSM is higher than or equal to those
of SM for all the points. We also see that MSM
shows better quality than SM as relativeMass

. . . . . 13
increases. Considering relativeMass at 0.98 as in : ],

also considers is larger than

we observe both the precision and recall of MSM
are better than that of SAM: the precision of MSM is
0.86, the precision of SM is 0.85, the recall of MSM
is 0.77, and the recall of SM is 0.72.

Hereafter, we fix the value of fopPR at 100%
since we observe higher recall and comparable
precision compared to other values of {topPR.
Suppose that topPR and relativeMass are set to
1009 and 1.0, respectively. Then, as explained in
Sections 4.3.1, both of the two algorithms consider all
domains (excluding the domains within Spam Seed
Set) as non-spam domains. Since, hereafter, we fix
the value of fopPR at 100%, we do not set

relativeMass to 1.0.

Exp. 4: comparison between LFS and MLFS
Fig.16 shows the results comparing the LFS with
the MLFS as IimitBL and /imitOL are varied. These

two experimental parameters are taken pairwise on

(@)

O3 16, LFSRt MLFSZHel EfX|El Ad Toelel EA
=1im]
Fig. 16. Comparison on the quality of the detected

spam domains between LFS and MLFS.
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the x-axis with ranging values from 2 to 7 for each
parameteru&.

Fig.16 shows that AMLFEFS performs much better
than LFS in terms of preicison and reasonably
comparable in terms of recall We observe, precision
for MLES is higher than that of LFS in all the
points. Moreover, we see the range of difference(0.14
to 0.22) in precision of two algorithms is larger than
that(0.04 to 0.06) in recall In addition, the highest
point of recall in MLFS beats many points of recall
for LFS Overall, MLES provides higher precision
compared to that of LFS even when both of the two
algorithms offer similar recalls. Thus, MLEFS is
overall better than LFS

From the experiment, we observe that MLFS has
best reading at /JmutBL=2 and hImitOL=2 since at
that point recall is the highest compared to that at
the other points, and precision is comparable to that
at the rest of the points. At this point AMLFES has
relatively higher precision and comparable recall than
those of LES. the precision of MLFS is 0.78, the
precision of LFS is 0.63, the recall of MLFS is 0.46,
and the recall of LF'S is 0.52.

In summary, we show that all the modified
algorithms provide generally better quality than the
respective original algorithms. In order to find the
best original algorithms for detecting web spam, we
compare precisions and recalls among ATE, SM, and
LFS. In this comparison, we do not take 7F into
account because 7F outputs non-spam domains as
explained in Section 5.2. We find SM as the best
algorithm among the three original algorithms since
its recall is much higher while its precision is
relatively comparable to the rest of the original
4,
Similarly, we find MSM as the best one among the
three modified algorithms AMATE, MSM, and MLFS.

algorithms as observed in Experiments 2 -

3.2. Comparisons for successions

In this section, we discuss the successions among
the MTRE, MATE, MSM, and MLFS. First, we
perform succession tests for the seed generator and

the spam detector, respectively. Then, we show the
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best succession of algorithm between the seed
generator and the spam detector. Finally, we compare
the best succession with the best known original and
the best modified algorithms.

Exp. 5 the best succession for the seed
generator
We conduct experiments to find the best

succession of MTR and MATE. Here, we conduct
the experiment to show the quality of the refined
seed. We the

experiment to show the quality of the refined spam

non-spam also conduct other
seed. In the experiment for the refined non-spam
seed, we vary the cutoff; from 50% to 160% while
we fix cutoffyry at 182% as the best point determined
in Experiment 2. Similarly, for the refined spam seed
we vary the cutoffy7 from 50% to 350% while we fix
cutoftyy at 110% as the best point determined in
Experiment 1. Here, we choose the value ranges of
those two parameters so that the results obtained at
points within the ranges are meaningful. That is, we
choose the ranges so that, near to the maximum
value of the range, recalllor precision) reaches to one
(or zero) or bears no change while only precision
decreases.

From Fig.17, we observe MATR-MTE is better than
MTR-MATR in terms of precision and comparable in
terms of recall for non-spam seed generation. From
Fig.18, we observe MTR-MATR is better than
MATR-MTR in terms of precision and comparable
in terms of recall for spam seed generation. Thus,
we select MATR-MTR and MTR-MATR as the

best successions of seed generators for non-spam

MATR-MTR ~ ===== MTR-MATR

Precision

09 ”7 06‘ 00 7

50 60 70 80 90 100 110 120 130 140 150 160
Varying cutoff;, (%) while cutoff,y, is fixed

50 60 70 80 90 100 110 120 130 140 150 160

Varying cutoff;, (%) while cutoff,y, is fixed
at 182%

(b) Varying cutoff; when
cutoffy,=182%

at 182%
(a) Varying cutoff;,when
cutoffy,=182%

a3 17 A MAT[ol LS Zhe| FME d| AW A
E9o E& dHlu
Fig. 17. Comparison on the quality of the refined

non-spam seed between successions of the
seed generators.
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MATR-MTR

Precision
Recall
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Varying cutoff,r, (%) while cutoff;, is fixed
at 110%

(a) Varying cutoff,when
cutoff=110%

50 90 130 170 200 240 280 320 360
Varying cutoff,y, (%) while cutoff;, is fixed
at 110%

(b) Varying cutoff,; when
cutoff=110%

a7 18 A MAMT|ol AXE Zie| MAE AH A=
of Z& Hl
Fig. 18. Comparison on the quality of the refined spam

seed between successions of the seed

generators.

seed and spam seed, respectively.

Exp. 6: the best succession for the spam
detector

We find the best
succession of spam detectors MSM and MLFS. As

explained in Table 1, we perform experiments for

conduct experiments to

two possible successions and two single algorithms.
In this experiment, we use refined seed sets produced
from the seed generators as the input seed sets for
all the algorithms.
Experiment 5, we use the refined non-spam seed
produced by MATR-MTR, which is the best choice

of the seed generation for the non-spam seed. We

Specifically, as observed in

also use the refined spam seed produced by
MTR-MATR, which is the best choice of the seed
generation for the spam seed. We vary relativeMass
of MSM to show the tendency for comparison from
0.7 to 0.9 in the same way as in Experiment 3. We
also

Experiment 3. As explained in Experiment 3, we fix

exclude relativeMass=1.0 as observed in

topPR=100% in order to get spam domains as the
results of investigating the entire domains. Moreover,

as the best result of MLFS in Experiment 4, we fix

IimitBL  and imutOL thresholds at 2 and 2,
—o— MLFS-MSM 8- MSM-MLFS ~ ==+== MLFS ~ =——t— MSM o MLFS-MSM B MSMMLFS — ==4==, MLFS ~ —t— MSM
8 hee T ey
O QQ’ N
06 “6
. .
N 07 075 08 085 09 095 N (g 0.75 08 085 09 095
relativeMass relativeMass
(@ (b)
i EfX|7|2te] HME AH EHelel EF H|

L
il

Fig. 19. Comparison on the quality of the detected spam

domains among the spam detectors.
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respectively.

Fig.19 show that MLFS has very low recall
compared to the rest of algorithms. We see that
MLFS-MSM is nearly identical to MSM-MLFS in
both precision and recall We also see that those two
algorithms(i.e.,, MLEFS-MSM and MSM-MLEFS) are
almost comparable to MSM in terms of precision
and are slightly better than AZSM in terms of recall.
Specifically, in Fig.19(b), when relativeMass=0.99,
MLFS-MSM and MSM-MLFS have 088 of recall
while ASM has 0.86 of recall Moreover, those three
algorithms have the same value of precision as 0.85
when relativeMass=0.99. Thus, either MLEFS-MSM
or MSM-MLFS is best. Consequently, we choose
MLFS-MSM as the best succession of spam
detectors without loss of generality.
summary, find MATR-MTR and
MTR-MATE as the best choice of the seed

for

In we

generation non-spam and spam  seeds,
respectively. We also see that MLFS-MSM, which
uses non-spam and spam seeds produced by the best
choice of the seed generation as input seed sets, is
the best for the spam detection. Hereafter, the best
found succession of the best seed generator(i.e.,
MATR-MTR the
MTR-MATR for the spam seed) followed by the
best spam detector (e, MLFS-MSM) is called

SuccessionBest.

for non-spam seed and

Exp. 7 comparison among the best succession,
the best known algorithm, and the best modified
algorithm

We find
improvement of the best succession against the best
modified and original(i.e., known) algorithms for the
detection of web spam. From the Experiments 2 - 4,
we observe that SAM is the best original algorithm
among the three original algorithms. We also observe
that AMSM is the best modified algorithm among the
modified algorithms.
MATR-MTR(for the non-spam  seed)
MTR-MATR(for the spam seed), which are followed
by MLFS-MSM, is the best succession of the

conduct experiments to quality

Moreover, we observe that

and
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Fig.

modified algorithms(SuccessionBest). this
experiment, we use Spam Seed Set and Non-Spam
Seed Set as the
algorithms. In the same way as in Experiment 6, we
vary the threshold re/ativeMass from 0.7 to 0.99, fix
topPR at 100%, and keep ZmitBL and [imutOL at 2
and 2, respectively. We use 1109 cutoffyy and 182%

cutoffyzy as in Experiment 6.

In

mmput seed sets for all the

In Fig.20, we see that SuccessionBest performs
better than or similar to both SM and MSM in
terms of recall while SuccessionBest is relatively
comparable to the rest in terms of precision. We also
see that SuccessionBest provides better quality as
relativeMass increases. Specifically, in Fig.20, when
relativeMass=0.99, we obtain the precisions 0.85, 0.86,
and 085 for SM, MSM, and SuccessionBest,
respectively. We also obtain the recalls 0.64, 0.70, and
0.88 for SM, MSM, and SuccessionBest, respectively.
Thus, outperforms
algorithms by up to 1.38 times in recal/l while

comparable to other two algorithms in precision.

SuccessionBest other two

Consequently, we conclude that SuccessionBest is

more effective than the rest for web spam filtering.

VI. Conclusions

In this paper, we have proposed seed refinement
techniques for four well-known web spam filtering
algorithms: TrustRank, Anti-TrustRank, Spam Mass,
and Link Farm Spam. We enrich the input seed set
by using both types of the input seed sets. These
techniques are helpful in maximizing recall with
precision. We also propose a strategy for the
succession of the modified algorithms. We classify

them into two classes: seed generators and spam
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detectors. Modified TrustRank(A/7FR) and Modified
Anti-TrustRank(MATR) are seed generators while
Modified Spam Mass(AZSM) and Modified Link Farm
Spam(MLFS) are spam detectors. Moreover, we
perform experiments between modified and original
algorithms and also among the successions of
modified algorithms in order to discover the best one.
Our experimental results show that all the modified
algorithms generally perform better than the original
and AMSM is the best modified algorithm

among them for web spam detection. We also show

ones,

that the best quality among the successions is
achieved by the MATR followed by MTR for
non-spam seed generator and M7TFR followed by
MATR for spam seed generator, which is then
followed by MLES and MSM(SuccessionBest). The
best succession outperforms SM and MSM by up to
1.38 times in recall and is comparable to these two
algorithms in precision: the recalls of SM, MSM,
and SuccessionBest are 0.64, 0.70, 0.88, respectively;
the precisions of SM, MSM, and SuccessionBest are
0.85, 0.86, and 0.85, respectively.
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