참고문헌
- Amin AR, Attur MG, Thakker GD, Patel PD, Vyas PR, Patel RN, et al. : A novel mechanism of action of tetracyclines : effects on nitric oxide synthases. Proc Natl Acad Sci U S A 93 : 14014-14019, 1996 https://doi.org/10.1073/pnas.93.24.14014
- Anthes DL, Theriault E, Tator CH : Ultrastructural evidence for arteriolar vasospasm after spinal cord trauma. Neurosurgery 39 : 804-814, 1996 https://doi.org/10.1097/00006123-199610000-00032
- Baptiste DC, Fehlings MG : Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23 : 318-334, 2006 https://doi.org/10.1089/neu.2006.23.318
- Basso DC, Beattie MG, Bresnahan JC : Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139 : 244-256, 1996 https://doi.org/10.1006/exnr.1996.0098
- Bracken MB : Treatment of acute spinal cord injury with methylprednisolone : results of a multicenter, randomized clinical trial. J Neurotrauma 8 Suppl 1: S47-S50; discussion S51-S52, 1991
- Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, et al. : Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury : 1-year follow up. Results of the third National Acute Spinal Cord Injury randomized controlled trial. J Neurosurg 89 : 699-706, 1998 https://doi.org/10.3171/jns.1998.89.5.0699
- Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL : Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53 : 55-63, 1994 https://doi.org/10.1016/0165-0270(94)90144-9
- Colburn RW, Rickman AJ, DeLeo JA : The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol 157 : 289-304, 1999 https://doi.org/10.1006/exnr.1999.7065
- DeVivo MJ : Causes and costs of spinal cord injury in the United States. Spinal Cord 35 : 809-13, 1997 https://doi.org/10.1038/sj.sc.3100501
- Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA : Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 97 : 1314-1326, 2006 https://doi.org/10.1111/j.1471-4159.2006.03799.x
- Golub LM, Ramamurthy NS, McNamara TF, Greenwald RA, Rifkin BR : Tetracyclines inhibit connective tissue breakdown : new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med 2 : 297-321, 1991 https://doi.org/10.1177/10454411910020030201
- Hall ED : The neuroprotective pharmacology of methylprednisolone. J Neurosurg 76 : 13-22, 1992 https://doi.org/10.3171/jns.1992.76.1.0013
- Hauben E, Gothilf A, Cohen A, Butovsky O, Nevo U, Smirnov I, et al. : Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 23 : 8808-8819, 2003
- Hurlbert RJ : Methylprednisolone for acute spinal cord injury : an inappropriate standard of care. J Neurosurg 93 : 1-7, 2000 https://doi.org/10.3171/jns.2000.93.1.0001
- Jiang F, Liu T, Cheng M, Pang XY, Bai ZT, Zhou JJ, et al. : Spinal astrocyte and microglial activation contributes to rat pain-related behaviors induced by the venom of scorpion buthus martensi karch. Eur J Pharmacol 623 : 52-64, 2009 https://doi.org/10.1016/j.ejphar.2009.09.028
- Jones TB, Basso DM, Sodhi A, Pan JZ, Hart RP, MacCallum RC, et al. : Pathological cns autoimmune disease triggered by traumatic spinal cord injury : implications for autoimmune vaccine therapy. J Neurosci 22 : 2690-2700, 2002
- Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR : Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4 : 451-464, 2004 https://doi.org/10.1016/j.spinee.2003.07.007
- Lammertse DP : Update on pharmaceutical trials in acute spinal cord injury. J Spinal Cord Med 27 : 319-325, 2004 https://doi.org/10.1080/10790268.2004.11753769
- Lee YL, Shih K, Bao P, Ghirnikar RS, Eng LF : Cytokine chemokine expression in contused rat spinal cord. Neurochem Int 36 : 417-425, 2000 https://doi.org/10.1016/S0197-0186(99)00133-3
- Popovich PG : Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Prog Brain Res 128 : 43-58, 2000
- Qiu J : China spinal cord injury network: Changes from within. Lancet Neurol 8 : 606-607, 2009 https://doi.org/10.1016/S1474-4422(09)70162-0
- Rabchevsky AG, Fugaccia I, Sullivan PG, Blades DA, Scheff SW : Efficacy of methylprednisolone therapy for the injured rat spinal cord. J Neurosci Res 68 : 7-18, 2002 https://doi.org/10.1002/jnr.10187
- Rideout HJ, Stefanis L : Caspase inhibition : a potential therapeutic strategy in neurological diseases. Histol Histopathol 16 : 895-908, 2001
- Romero-Sandoval A, Chai N, Nutile-McMenemy N, DeLeo JA : A comparison of spinal iba1 and gfap expression in rodent models of acute and chronic pain. Brain Res 1219 : 116-126, 2008 https://doi.org/10.1016/j.brainres.2008.05.004
- Rothman SM, Winkelstein BA : Chemical and mechanical nerve root insults induce differential behavioral sensitivity and glial activation that are enhanced in combination. Brain Res 1181 : 30-43, 2007 https://doi.org/10.1016/j.brainres.2007.08.064
- Saganová K, Orendácova J, Cízková D, Vanický I : Limited minocycline neuroprotection after balloon-compression spinal cord injury in the rat. Neurosci Lett 433 : 246-249, 2008 https://doi.org/10.1016/j.neulet.2008.01.041
- Schwab JM, Brechtel K, Mueller CA, Failli V, Kaps HP, Tuli SK, et al. : Experimental strategies to promote spinal cord regeneration--an integrative perspective. Prog Neurobiol 78 : 91-116, 2006 https://doi.org/10.1016/j.pneurobio.2005.12.004
- Schwab JM, Seid K, Schluesener HJ : Traumatic brain injury induces prolonged accumulation of cyclooxygenase-1 expressing microglia/brain macrophages in rats. J Neurotrauma 18 : 881-890, 2001 https://doi.org/10.1089/089771501750451802
- Shin MS, Chung BS, Kim YS : Effect of cyclosporin a in a rat spinal cord injury model. J Korean Neurosurg Soc 27 : 1361-1369, 1998
- Short DT, El Masry WS, Jones PW : High dose methylprednisolone in the management of acute spinal cord injury-a systematic review from a clinical perspective. Spinal Cord 38 : 273-286, 2000 https://doi.org/10.1038/sj.sc.3100986
- Smirnova IV, Citron BA, Arnold PM, Festoff BW : Neuroprotective signal transduction in model motor neurons exposed to thrombin : G-protein modulation effects on neurite outgrowth, Ca(2+) mobilization, and apoptosis. J Neurobiol 48 : 87-100, 2001 https://doi.org/10.1002/neu.1044
- Springer JE, Azbill RD, Knapp PE : Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 5 : 943-946, 1999 https://doi.org/10.1038/11387
- Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, et al. : Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101 : 3071-3076, 2004 https://doi.org/10.1073/pnas.0306239101
- Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J : Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21 : 2580-2588, 2001
- Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K : P2y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28 : 4949-4956, 2008 https://doi.org/10.1523/JNEUROSCI.0323-08.2008
- von Bernhardi R, Ramirez G : Microglia astrocyte interaction in alzheimer's disease : friends or foes for the nervous system? Biol Res 34 : 123-128, 2001
- Wasserman JK, Schlichter LC : Neuron death and inflammation in a rat model of intracerebral hemorrhage : effects of delayed minocycline treatment. Brain Res 1136 : 208-218, 2007 https://doi.org/10.1016/j.brainres.2006.12.035
- Yune TY, Lee JY, Jung GY, Kim SJ, Jiang MH, Kim YC, et al. : Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci 27 : 7751-7761, 2007 https://doi.org/10.1523/JNEUROSCI.1661-07.2007
피인용 문헌
- Expression of inflammatory cytokines following acute spinal cord injury in a rodent model vol.90, pp.4, 2011, https://doi.org/10.1002/jnr.22820
- The effect of minocycline on the masticatory movements following the inferior alveolar nerve transection in freely moving rats vol.8, pp.1, 2011, https://doi.org/10.1186/1744-8069-8-27
- Exposure to ELF- magnetic field promotes restoration of sensori-motor functions in adult rats with hemisection of thoracic spinal cord vol.31, pp.3, 2011, https://doi.org/10.3109/15368378.2012.695706
- The Neuroprotective Effect of Treatment of Valproic Acid in Acute Spinal Cord Injury vol.51, pp.4, 2011, https://doi.org/10.3340/jkns.2012.51.4.191
- Neuropathic pain: An evolutionary hypothesis vol.78, pp.5, 2012, https://doi.org/10.1016/j.mehy.2012.01.044
- Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord : MNP-Incorporated hBM-MSCs by PEMFS vol.60, pp.6, 2011, https://doi.org/10.1002/bab.1109
- Pain‐ameliorating effects of minocycline: An emerging treatment modality vol.91, pp.1, 2011, https://doi.org/10.1002/jnr.23132
- SEPARATION DIFFERENCES AMONG PHENYL HYDRIDE, UDC CHOLESTEROL, AND BIDENTATE C8 STATIONARY PHASES FOR STABILITY INDICATING METHODS OF TETRACYCLINES vol.36, pp.7, 2013, https://doi.org/10.1080/10826076.2012.678457
- Minocycline: far beyond an antibiotic : Minocycline: far beyond an antibiotic vol.169, pp.2, 2011, https://doi.org/10.1111/bph.12139
- Prolonged Minocycline Treatment Impairs Motor Neuronal Survival and Glial Function in Organotypic Rat Spinal Cord Cultures vol.8, pp.8, 2013, https://doi.org/10.1371/journal.pone.0073422
- Toll-Like Receptor 4–Dependent Microglial Activation Mediates Spinal Cord Ischemia–Reperfusion Injury vol.128, pp.11, 2011, https://doi.org/10.1161/circulationaha.112.000024
- Persistent At-Level Thermal Hyperalgesia and Tactile Allodynia Accompany Chronic Neuronal and Astrocyte Activation in Superficial Dorsal Horn following Mouse Cervical Contusion Spinal Cord Injury vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0109099
- Investigational drugs for the treatment of spinal cord injury: review of preclinical studies and evaluation of clinical trials from Phase I to II vol.24, pp.5, 2015, https://doi.org/10.1517/13543784.2015.1009629
- Minocycline Reduces the Severity of Autonomic Dysreflexia after Experimental Spinal Cord Injury vol.35, pp.24, 2011, https://doi.org/10.1089/neu.2018.5703
- Postirradiation Necrosis after Slow Microvascular Breakdown in the Adult Rat Spinal Cord is Delayed by Minocycline Treatment vol.190, pp.2, 2018, https://doi.org/10.1667/rr15039.1
- Spontaneous and Stimulus-Evoked Respiratory Rate Elevation Corresponds to Development of Allodynia in Spinal Cord-Injured Rats vol.36, pp.12, 2011, https://doi.org/10.1089/neu.2018.5936
- The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents vol.9, pp.None, 2011, https://doi.org/10.1016/j.ynpai.2020.100059
- Sumatriptan improves the locomotor activity and neuropathic pain by modulating neuroinflammation in rat model of spinal cord injury vol.43, pp.1, 2011, https://doi.org/10.1080/01616412.2020.1819090
- Antibiotics with therapeutic effects on spinal cord injury: a review vol.35, pp.2, 2011, https://doi.org/10.1111/fcp.12605
- Antibiotics with therapeutic effects on spinal cord injury: a review vol.35, pp.2, 2011, https://doi.org/10.1111/fcp.12605