DOI QR코드

DOI QR Code

화성 암권의 진화해석을 위한 예비연구: 3가철 산화물의 자화특성

Magnetism of Ferric Iron Oxide and Its Significance in Martian Lithosphere

  • 정두희 (충남대학교 지질환경과학과) ;
  • 유용재 (충남대학교 지질환경과학과)
  • Jeong, Doo-Hee (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Yu, Yong-Jae (Department of Geology and Earth Environmental Sciences, Chungnam National University)
  • 투고 : 2011.08.23
  • 심사 : 2011.09.22
  • 발행 : 2011.09.30

초록

화성의 암권 진화 연구에서 최근 각광받는 광물은 적철석으로 대표되는 3가철 산화물이다. 물리적 방법의 하나인 잔류자화기억도 실험은 비파괴적이고 지구 기원이 아닌 고체 시료의 자화특성 규명에 유용하게 사용된다. 금번 연구에서는 알루미늄 농도를 조절하며 열수반응과 탈수반응을 통해 총 8개 성분의 3 가철 산화물을 합성하였다. 이들 시료에 대해 잔류자화기억도와 자화상실온도($T_N$)를 측정하였다. 3가철 산화물의 격자상수는 알루미늄의 3가철 함량이 증가하며 감소한다. 3 가철 산화물의 자화상실 온도 역시 알루미늄의 몰농도가 증가하며 감소한다. 알루미늄이 거의 첨가되지 않은 적철석의 $T_N$은 광물의 합성방법과 무관하게 대략 $690^{\circ}C$로 수렴한다. 탈수반응으로 합성된 3가철 산화물의 잔류자화기억도는 알루미늄의 함량에 거의 무관하게 매우 높지만, 열수반응으로 합성된 3가철 산화물의 잔류자화기억도는 알루미늄 함량이 증가하며 동반 상승한다. 상대적으로 쉽고 측정이 간단하며 비파괴적인 잔류자화기억도를 이용하면 추후 암석 내 3가철 산화물 입자의 성인 유추가 가능하며, 특히 화성의 암권 진화 규명에도 일조하리라 예상된다.

Martian satellite missions indicate that Martian equatorial plains are covered by ferric iron oxide. As a non-destructive technique, low-temperature treatment of remanent magnetization is effective in identifying magnetic minerals in rocks. In the present study, four sets of ferric iron oxides were prepared by aqueous alteration of ferrihydrite at warm conditions and four others by dehydration of goethite. As the amount of aluminous trivalent cations increases, crystallographic lattice parameters and N$\acute{e}$el temperatures decrease. Such declines originate from lattice distortion as the smaller aluminous trivalent cations substitue the larger terric irons. Whilst high remanence memory was observed for aqueously produced ferric iron oxide, low remanence memory was observed for dehydrated ferric iron oxide. In the future. magnetic remanence memory would be powerful in diagnosing the origin of ferric iron oxide.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Antretter, M., Fuller, M., Scott, E., Jackson, M., Moskowitz, B., and Solheid, P. (2003) Paleomagnetic record of Martian meteorite ALH84001. Journal of Geophysical Research, 108(E6), 5049, doi:10.1029/2002JE001979.
  2. Bando, Y., Kiyama, M., Yamamoto, N., Takada, T., Shinjo, T., and Takaki, H. (1965) Magnetic properties of ${\alpha}Fe_2O_3$ fine particles. Journal of Physical Society of Japan, 20, 2086. https://doi.org/10.1143/JPSJ.20.2086
  3. Christensen, P.R., Morris, R.V., Lane, M.D., Bandfield, J.L., and Malin, M.C. (2001) Global mapping of Martian hematite mineral deposits: Remnants of water-driven processes on early Mars. Journal of Geophysical Research, 106(E10), 23,873-23,885, doi:10.1029/2000JE001415.
  4. Christensen, P., McSween Jr, H.Y., Bandfield, J.L., Ruff, S.W., Rogers, A.D., Hamilton, V.E., Gorelick, N., Wyatt, M.B., Jakosky, B.M., Kieffer, H.H., Malin, M.C., and Moersch, J.E. (2005) Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436, 504-509. https://doi.org/10.1038/nature03639
  5. de Boer, C.B., Dekkers, M.J., and van Hoof, T.A.M. (2001) Rock-magnetic properties of TRM carrying baked and molten rocks straddling burnt coal seams. Physics of the Earth and Planetary Interiors, 126, 93-108. https://doi.org/10.1016/S0031-9201(01)00246-1
  6. Diakonov, I., Khodakovsky, I., Schott, J., and Sergeeva, E. (1994) Thermodynamic properties of iron oxides and hydroxides. I. Surface and bulk thermodynamic properties of goethite (${\alpha}FeOOH$) up to 500 K. European Journal of Mineralogy, 6, 967-983. https://doi.org/10.1127/ejm/6/6/0967
  7. Dunlop, D.J., (1971) Magnetic properties of fine-particle hematite. Annals de Géophysique, 27, 269-293.
  8. Dunlop, D.J. and Kletetschka, G. (2001) Multidomain hematite: A source of planetary magnetic anomalies? Geophysical Research Letters, 28, 3345-3348. https://doi.org/10.1029/2001GL013125
  9. Kletetschka, G., Acuna, M.H., Kohout, T., Wasilewski, P.J., and Connerney, J.E.P. (2004) An empirical scaling law for acquisition of thermoremanent magnetization. Earth and Planetary Science Letters, 226, 521-528. https://doi.org/10.1016/j.epsl.2004.08.001
  10. Liebermann, R.C. and Banerjee. S.K. (1971) Magnetoelastic interactions in hematite: Implications for geophysics. Journal of Geophysical Research, 76, 2735-2756. https://doi.org/10.1029/JB076i011p02735
  11. Muench, G.J., Arajs, S., and Matijevic, E. (1985) The Morin transition in small ${\alpha}Fe_2O_3$ particles. Physica Status Solidi A, 92, 187-192. https://doi.org/10.1002/pssa.2210920117
  12. Ozdemir, O., Dunlop, D.J., and Berquo, T.S. (2008) Morin transition in hematite: Size dependence and thermal hysteresis. Geochemistry Geophysics Geosystems, 9, Q10Z01, doi: 10.1029/2008GC002110.
  13. Petrovsky, E. and Kapicka, A. (2006) On determination of the Curie point from thermomagnetic curves. Journal of Geophysical Research, 111, B12S27, doi:10.1029/2006JB004507.
  14. Purucker, M., Ravat, D.T., Frey, H.V., Voorhies, C.V., Sabaka, T., and Acuna, M.H. (2000) An altitudenormalized magnetic map of Mars and its interpretation. Geophysical Research Letters, 27, 2449-2452. https://doi.org/10.1029/2000GL000072
  15. Rochette, P., Lorand, J.-P., Fillion, G., and Sautter, V. (2001) Pyrrhotite and the remanent magnetization on SNC meteorites: a changing perspective on Martian magnetism. Earth and Planetary Science Letters, 190, 1-12. https://doi.org/10.1016/S0012-821X(01)00373-9
  16. Schubert, G., Russell, C.T., and Moore, W.B. (2000) Timing of the Martian dynamo. Nature, 408, 666-667. https://doi.org/10.1038/35047163
  17. Spencer, E. and Percival, F.G. (1952) The structure and origin of the banded hematite jaspers of Singhbhum, India. Econimic Geology, 47, 365-383. https://doi.org/10.2113/gsecongeo.47.4.365
  18. Walker, T.R. (1967) Formation of red beds in modern and ancient deserts. Geological Society of America Bulletin, 78, 353-368. https://doi.org/10.1130/0016-7606(1967)78[353:FORBIM]2.0.CO;2
  19. Weiss, B.P., Kirschvink, J.L., Baudenbacher, F.J., Vali, H., Peters, N.T., MacDonald, F.A., and Wikswo, J.P. (2000) A low temperature transfer of ALH84001 from Mars to Earth. Science, 290, 791-795. https://doi.org/10.1126/science.290.5492.791
  20. Weiss, B.P., Vali, H., Baudenbacher, F.J., Kirschvink, J.L., Stewart, S.T., and Shuster, D.L. (2002) Records of an ancient Martian magnetic field in ALH84001. Earth and Planetary Science Letters, 200, 449-463.
  21. Yu, Y. and Gee, J.S. (2005) Spinel in Martian meteorite SaU 008: Implications for Martian magnetism. Earth and Planetary Science Letters, 232, 287-294. https://doi.org/10.1016/j.epsl.2004.12.015

피인용 문헌

  1. Magnetic Stability of Hematite on Low-temperature Magnetic Phase Transition vol.26, pp.1, 2013, https://doi.org/10.9727/jmsk.2013.26.1.19