The Prediction of Elastic Behavior of the Nano-Sized Honeycombs Based on the Continuum Theory

연속체 이론을 기반으로 한 나노 허니콤 구조물의 탄성 거동 예측

  • 이용희 (서울대학교 기계항공공학부 멀티스케일 기계설계) ;
  • 정준호 (서울대학교 협동과정 자동차공학) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2011.06.30
  • Accepted : 2011.07.21
  • Published : 2011.08.31

Abstract

The nano-size hoenycomb structures have the higher ratio of the surface to the volume than macro-size honeycomb structures, and they can maximize the functionality of the electrical and chemical catalyst. The mechanical behaviors of the nano-sized structures are different from ones of the macro-size structure, and it is caused by the surface effect. This surface effect can be investigated by the atomistic simulation; however, the prediction of mechanical behaviors of the nano-sized honeycombs are practically impossible due to excessive computational resources and computation time. In this paper, by combining the bridging method considering the surface stress elasticity model with homogenization method, the mechanical behaviors of the nano-sized honeycombs are predicted efficiently.

나노 크기의 허니콤 구조물은 거시적 크기의 허니콤 구조물에 비해 보다 높은 부피 대비 표면적 비율을 구현하여 전기적, 화학적인 촉매로써 기능성을 극대화할 수 있다. 나노 크기의 구조물은 거시적 크기의 구조물과 다른 기계적 거동양상을 보이며 이는 표면효과에 기인한다. 이러한 표면효과는 원자 수준 전산모사(atomistic simulation)를 통해 규명할 수 있으나 나노 허니콤 구조물의 거동을 예측하는 것은 현실적으로 과도한 전산자원 및 계산시간으로 인해 불가능한 실정이다. 본 연구에서는 표면응력 탄성모델을 적용한 브리징방법을 균질화기법과 연계하여 나노 크기의 허니콤 구조물의 기계적 거동을 효율적으로 예측하였다.

Keywords

References

  1. Buannic, N., Cartraud, P., Quesnel, T. (2003) Homogeization of Corrugated Core Sandwich Panels, Composite Structures, 59, pp.299-312. https://doi.org/10.1016/S0263-8223(02)00246-5
  2. Dingreville,Qu, R., Cherkaous, M. (2005) Surface Free Energy and its Effect on the Elastic Behavior of Nano-sized Particles, Wires and Films, Journal of the Mechanics and Physics of Solids, 53, pp.1827-1854. https://doi.org/10.1016/j.jmps.2005.02.012
  3. Cho, M., Choi, J., Kim, W. (2009) Continuum-based Bridging Model of Nannoscale Thin Film Considering Surface Effects, Japanese Journal of Applied Physics, 48, 020219. https://doi.org/10.1143/JJAP.48.020219
  4. Gurtin, M.E., Murdoch, A.I. (1975) A Continuum Theory of Elastics Material Surfaces, Archive for Rational Mechanics and Analysis, 57, pp.291-323.
  5. Guedes, J.M., Kikuchi, N. (1990) Preprocessing and Postprocessing for Material Based on the Homogenization Method with Adaptive Finite Element Methods, Computer Methods in Applied Mechanics and Engineering, 83, pp.143-198. https://doi.org/10.1016/0045-7825(90)90148-F
  6. Hollister, S.J., Kikuchi, N. (1992) A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites, Computational Mechanics, 10, pp.73-95. https://doi.org/10.1007/BF00369853
  7. Honda, K., Yoshimura, M., Rao, T.N., Tryk, D.A, Fujishima, A., Yasui, K., Sakamoto, Y., Nishio, K., Masuda, H. (2001) Electrochemical Properties of Pt-modified Nano-honeycomb Diamond Electrodes, Journal of Electroanalyical Chemistry, 514, pp.35-50. https://doi.org/10.1016/S0022-0728(01)00614-3
  8. Lewinski, T. (1991) Effective Models of Composite Periodic Plates- I. Asymptotic Solution, International Journal of Solids and Structure, 27, pp.1151-1172.
  9. Lewinski, T. (1991) Effective Models of Composite Periodic Plates- III. Two-Dimensional Approaches, International Journal of Solids and Structure, 27, pp.1151-1172.
  10. Lillo, M., Losic, D. (2009) Pore Opening Detection for Controlled Dissolution of Barrier Oxide Layer and Fabrication of Nanoporous Alumina with Throughhole Morphology, Journal of Membrane Science, 327, pp.11-17. https://doi.org/10.1016/j.memsci.2008.11.033
  11. Miller, R.E., Shenoy, V.B. (2000) Size-dependent Elastic Properties of Nanosized Structural Element, Nanotechnology, 11, pp.139-147. https://doi.org/10.1088/0957-4484/11/3/301
  12. Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D. (2001) Structural Stability and Lattice Defects in Copper : Ab Inito, Tight-binding and Embedded-atom Caculations, Physical Review B, 63, 224106. https://doi.org/10.1103/PhysRevB.63.224106
  13. Streitz, F.H., Cammarata, R.C., Sieradzki, K. (1994) Surface-stress Effects on Elastic Properties. I. Thin Metal Films, Physical Review B, 49, pp.10699-10706. https://doi.org/10.1103/PhysRevB.49.10699
  14. Plimpton, S., Crozier, P., Thompson, A. (2008) 2008, LAMMPS: Large-scale Atomic Molecular Massively Parallel Simulator. Sandia National Laboratoies.