근사최적화 기법을 이용한 RC 빌딩의 구조 최적설계

Design Optimization of a RC Building Structure using an Approximate Optimization Technique

  • 박창현 (한양대학교 대학원 기계공학과) ;
  • 안희재 (한양대학교 대학원 기계공학과) ;
  • 최동훈 (한양대학교 기계공학부) ;
  • 정철규 ((주)일맥구조엔지니어링/연구소)
  • 투고 : 2010.12.28
  • 심사 : 2011.03.03
  • 발행 : 2011.04.30

초록

본 논문에서는 수직하중, 풍하중 및 지진하중에 의해 발생하는 변위 관련 구속조건을 만족하면서 RC(Reinforced Concrete) 빌딩 구조의 부피를 최소화하기 위한 설계문제를 정식화하였다. 구조해석 절차 자동화의 어려움으로 인해 실험 계획법과 근사화기법, 최적화기법을 이용한 근사모델기반 최적설계를 수행하였다. 특히, 만족할 만한 설계 결과를 얻을 때까지 설계변수의 범위와 구속조건의 허용값을 조정하는 단계적 최적설계 방법을 제안하였다. 제안된 단계적 최적설계 방법을 통해 주어진 구속조건을 모두 만족하면서 RC 빌딩 구조의 부피를 초기 설계 대비 53.3% 감소시키는 결과를 얻음으로 써 본 논문에서 보인 단계적 최적설계 방법의 타당성을 보였다.

A design optimization problem was formulated to minimize the volume of an RC building structure while satisfying design constraints on structural displacements under vertical, wind and seismic loads. We employed metamodel-based design optimization using design of experiments, metamodeling and optimization algorithm to circumvent the difficulty of the automation of structural analysis procedure. Especially, we proposed a design approach of repetitive design optimizations by stages with changing the side constraint values on design variables and limit values on design constraints until a satisfactory design result was obtained. Using the proposed design approach, the volume of the RC building structure has been reduced by 53.3 % compared to the initial one while satisfying all the design constraints. This design result clearly shows the validity of the proposed design approach.

키워드

참고문헌

  1. 곽효경, 김지은 (2008) 직접탐색을 이용한 유전자 알고리즘에 의한 RC프레임의 최적설계, 한국전산구조공학회 논문집, 21(1), pp.21-34.
  2. 박창현, 안희재, 최동훈, 정철규 (2010) 중량 최소화를 위한 RC 빌딩의 구조 최적설계, 한국전산구조공학회 논문집, 23(5), pp.501-507.
  3. Atabay, S. (2009) Cost Optimization of Three-dimensional Beamless Reinforced Concrete Shear-wall Systems via Genetic Algorithm, Expert Systems with Applications, 36(2), pp.3555-3561. https://doi.org/10.1016/j.eswa.2008.02.004
  4. Camp, C.V., Pezeshk, S., Hansson, H. (2003) Flexural Design of Reinforced Concrete Frames by Genetic Algorithm, J. Struct. Eng., 129(1), pp.105-115. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(105)
  5. Chan, C.M., Zou, X.K. (2004) Elastic and Inelastic Drift Performance Optimization for Reinforced Concrete Buildings under Earthquake Loads, Earthquake Engng Struct. Dyn., 33, pp.929-950. https://doi.org/10.1002/eqe.385
  6. Gang, Li, Haiyan, Lu, Xiang L. (2009) A Hybrid Genetic Algorithm and Optimality Criteria Method for Optimum Design of RC Tall Buildings under Multi-load Cases, Struct. Design Tall Spec. Build., 19(6), pp.656-678.
  7. Kim, J.R., Choi, D.H. (2008) Enhanced Two-point Diagonal Quadratic Approximation Methods for Design Optimization, Comput. Meth. Appl. Mech. Engrg., 197(6-8), pp.846-856. https://doi.org/10.1016/j.cma.2007.09.014
  8. Lee, C., Ahn, J. (2003) Flexural Design of Reinforced Concrete Frames by Genetic Algorithm, J. Struct. Eng., 132(6), pp.978-990.
  9. McCormac, J.C. (1998) Design of Reinforced Concrete, 4th Ed., Addison-Wesley Longman, Calif, pp.726.
  10. Myers, R.H., Montgomery, D.C. (2002) Response Surface Methodology: Process and Product Optimization Using Designed Experiments, WILEY, New York, p.31.
  11. Sahab, M.G., Ashour, A.F., Toropov, V.V. (2005) Cost Optimization of Reinforced Concrete Flat Slab Buildings, Eng. Struct., 27(3), pp.313-322. https://doi.org/10.1016/j.engstruct.2004.10.002
  12. Zou, X.K., Chan, C.M., Li, G., Wang, Q. (2007) Multiobjective Opimization for Performance-Based Design of Reinforced Concrete Frames, J. Struct. Eng., 133(10), pp.1462-1474. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1462)