조합하중을 받는 Kraft 판지의 강도예측

Strength Prediction of Kraft Paperboard under Combined Stress

  • 투고 : 2010.06.28
  • 심사 : 2010.10.04
  • 발행 : 2011.02.28

초록

본 논문에서는 Tsai-Hill기준을 변형하여 조합하중을 받는 이방성재료의 강도를 정확히 예측할 수 있는 새로운 파손기준을 제안하였다. 이 기준의 유효성은 조합하중을 받고 있는 Kraft 판지에 대한 실험결과와 비교하여 나타내었다. 재료축 방향의 전단응력이 주어진 경우, Tsai-Hill기준은 매우 보수적인 결과를 보여주고 있으나, 본 해석에서 제안한 기준은 실험 결과와 잘 일치하고 있다. 또한 Tan-Cheng기준과 비교하여 강도를 더욱 단순하게 해석할 수 있는 능력을 갖고 있다.

Based on the form of the Tsai-Hill criterion, a new failure criterion for anisotropic material subjected to combined stress is developed and demonstrated. It is capable of accurately calculating the strength of anisotropic materials. The generality and accuracy of the present failure criterion are illustrated by examination through the use of Kraft paperboards under various loading conditions. Compared to the Tsai-Hill theory, which is much too conservative at high levels of shear stress, the present criterion has a good agreement with the experimental data. It also has the ability to calculate the strength more simply, compared to the Tan-Cheng theory.

키워드

참고문헌

  1. Daniel, I.M., Ishai, O. (2005) Engineering Mechanics of Composite Materials, 2nd ed., Oxford University Press.
  2. Daniel, I.M. (2006) Failure of Composite Materials, Proc. 16th European Conference of Fracture, Alexandroupolis, Greece.
  3. Daniel, I.M., Luo, J.J., Schubel, P.M. (2008) Three- Dimensional Characterization of Textile Composites, Composites Part B, 39, pp.13-19.
  4. Gunderson, D.E., Bendtsen, L.A., Rowlands, R.E. (1986) A Mechanistic Perspective of the Biaxial Strength of Paperboard, Journal of Engineering Materials and Technology, ASME, 108, pp.135-140. https://doi.org/10.1115/1.3225850
  5. Gutkin, R., Pinho, S.T, Robinson, P., Curtis, P.T. (2009) Micro-Mechanical Modelling of Shear-Driven Fiber Compressive Failure and of Fibre Kinking for Failure Envelope Generation in CFRP Laminates, Composites Science and Technology, 70, pp.1214- 1222.
  6. Hashin, Z. (1985) Analysis of Cracked Laminates: A Variational Approach, Mechanics of Materials, 4, 1985, pp.121-136. https://doi.org/10.1016/0167-6636(85)90011-0
  7. Hahn, H.T., Williams, J.G. (1986) Compressive Failure Mechanism in Unidirectional Composites, in Composite Materials: Testing and Design, ASTM STP 893, pp.115-139.
  8. Hinton, M.J., Kaddour, A.S,, Soden, P.D. (2004) Failure Criteria in Fibre Reinforced Polymer Composites: World-Wide Failure Exercise, Oxford, Elsevier.
  9. Kim, S.Y., Park, H.S., Kang, M.S., Choi, J.H., Koo, J.M., Seok, C.S. (2009) Evaluation of Failure Strength of Woven CFRP Composite Plate Subjected to Axial Load by Tan-Cheng Failure Criterion, Trans. KSME(A), 33(4), pp.360-365.
  10. Hankinson, R.L (1921) Investigation of Crushing Strength of Spruce at Varying Angles of Grain, Air Service Information Circular No. 259, US Air Service.
  11. Linero, L.G. (2002) Global Fracture Analysis of Laminated Composite Materials for Aerospace Structures, Ph. D dissertation, Caltech.
  12. Milkovich, S.M., Sykes, G.F., Herakovich, C.T. (1986) Space Radiation Effects on the Thermomechanical Behavior of Graphite-Epoxy Composites, Journal of Composite Materials, 20, pp.579-593. https://doi.org/10.1177/002199838602000605
  13. Pimenta, S, Gutkin, R.,Pinho, S.T.,Robinson, P. (2009) A Micromechanical Model for Kink-Band Formation: Part II-Analytical Modelling, Composites Science and Technology, 69, pp.956-964. https://doi.org/10.1016/j.compscitech.2009.02.003
  14. Rowlands, R.E. (1985) Strength (Failure) Theories and Their Experimental Correlations, in Failure Mechanics of Composites, Handbook of Composites, 3, Sih, G.C. and Skuda, A.M eds, NY, North- Holland, pp.71-128.
  15. Rowlands, R.E., Gunderson, D.E., Suhling, J.C., Johnson, M.W. (1985) Biaxial Strength of Paperboard Predicted by Hill-Type Theories, Journal of Strain Analysis, 20(2), pp.121-127. https://doi.org/10.1243/03093247V202121
  16. Suhling, J.C., Rowlands, R.E., Johnson, M.W., Gunderson, D.E. (1985) Tensorial Strength Analysis of Paperboard, Experimental Mechanics, 25, pp.75-84. https://doi.org/10.1007/BF02329129
  17. Tan, S.C., Cheng, S. (1993) Failure Criteria for Fibrous Anisotropic Materials, Journal of Materials in Civil Engineering, ASCE, 5(2), pp.198-211.
  18. Wu, E.M. (1972) Optimal Experimental Measurements of Anisotropic Failure Tensors, Journal of Composite Materials, 6, pp.472-489. https://doi.org/10.1177/002199837200600404