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On the Multicast Capacity of Wireless Ad Hoc Networks
with Network Coding

Zheng Wang, Shirish S. Karande, Hamid R. Sadjadpour, and J. J. Garcia-Luna-Aceves

Abstract: In this paper, we study the contribution of network cod-
ing (NC) in improving the multicast capacity of random wireless
ad hoc networks when nodes are endowed with multi-packet trans-
mission (MPT) and multi-packet reception (MPR) capabilities. We
show that a per session throughput capacity of ©(nT3(n)) can be
achieved as a tight bound when each session contains a constant
number of sinks where 7 is the total number of nodes and T'(n) is
the transmission range!. Surprisingly, an identical order capacity
can be achieved when nodes have only MPR and MPT capabili-
ties. This result proves that NC does not contribute to the order ca-
pacity of multicast traffic in wireless ad hoc networks when MPR
and MPT are used in the network. The result is in sharp contrast to
the general belief (conjecture) that NC improves the order capacity
of multicast. Furthermore, if the communication range is selected
to guarantee the connectivity in the network, i.e., O(,/logn/n) =
T(n) = O(loglogn/logn), then the combination of MPR and

3
MPT achieves a throughput capacity of © (log? n/+/n) which pro-
vides.an order capacity gain of @(log2 1) compared to the point-
to-point multicast capacity with the same number of destinations.

Index Terms: Capacity, multicast, network coding, wireless ad hoc
networks.

I. INTRODUCTION

The seminal work by Gupta and Kumar {1} has sparked a
significant interest in investigating the fundamental capacity
limits of wireless ad hoc networks. Several techniques {2]-[4]
have been developed with the objective of improving the capac-
ity of wireless ad hoc networks, Network coding (NC), which
was originally proposed by Ahlswede et al. in [5], is one su-
ch technique. Unlike traditional store-and-forward routing, net-
work coding scheme encodes the messages received at inter-
mediate nodes, prior to forwarding them to subsequent next-
hop neighbors. Ahlswede ef al. [5] showed that network cod-
ing can achieve a multicast flow equal to the min-cut for a sin-
gle source and under the assumptions of a directed graph. This
and other works in network coding (NC) [6]-{8] have motivated
a large number of researchers to investigate the impact of NC
in increasing the throughput capacity of wireless ad hoc net-
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LT(n) is constrained by the decoding/encoding complexity of the nodes in
the network.

works. However, Liu et al. [9] recently showed that NC does not
increase the order of the throughput capacity for multi-pair uni-
cast traffic. Nevertheless, a number of efforts (analog network
coding [10], physical network coding [11]) have continued the
quest for improving the multicast capacity of ad-hoc networks
by using NC. Despite the claims of throughput improvement by
such studies, the impact of NC on the multicast scaling law has
remained uncharacterized.

Promising approaches [10], [11] implicitly assume the com-
bination of NC (transmitting multiple packets encoded in a sin-
gle transmission) with multi-packet transmission (MPT) and
multi-packet reception (MPR) [12]-[14] (i.e., the ability to suc-
cessfully transceive multiple concurrent transmissions by em-
ploying physical-layer interference cancelation techniques). We
consider MPT and MPR as an equivalent model (in terms of
transmitter or receiver point of view respectively) for fully con-
nected graph when transceiver range T'(n) = 1 or partially con-
nected graph when 7'(n) < 1. Note that the selection of 7'(n) in
MPT and MPR depends on the decoding/encoding complexity
of the nodes in the network. One effective technique to imple-
ment MPT and MPR is to utilize beamforming. The detail im-
plementation of this technique has been discussed extensively
in [15] and [16]. MPR has been shown to increase the capac-
ity regions of ad hoc networks.[17], and very recently Garcia-
Luna-Aceves et al. [18] have shown that the order capacity in
wireless ad hoc networks subject to multi-pair unicast traffic is
increased with MPR. These prior efforts raise three important
questions: {a) What is the order of multicast throughput achieved
by the combination of NC with MPT and MPR? (b) Does this
combination provide us with an order gain (instead of a con-
stant) over traditional techniques based on routing and point-to-
point communication? (¢) If yes, what exactly leads to this gain?
Is NC necessary or does the combination of MPT and MPR suf-
fice? It is important to note that combination of NC with MPT
and MPR has been considered in literature {12], [13], and [14]
without explicitly using these terms and it is therefore important
to investigate the above questions.

In this work, we address the above three questions. The an-
swers can be summarized by our main results.

o When each multicast group consists of a constant number of
sinks, the combination of NC, MPT and MPR provides a per
session throughput capacity of ©(nT3(n)), where T'(n) is
the communication range.

o This scaling law represents an order gain of ©(n?7*(n)) over
a combination of routing and point-to-point communication.

» The combination of only MPT and MPR is sufficient to achieve
a per-session multicast throughput order of ©(n73(n)). Con-
sequently, NC does not contribute to the multicast capacity
when MPR and MPT are used in the network!
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The remainder of this paper is organized as follows. In
Section II, we give an overview of capacity analysis for NC,
MPT, MPR, and other existing techniques. In Section I, we in-
troduce the models we used. In Sections IV and V, we give our
main results with MPT and MPR when network coding is not

used and used, respectively. We conclude our paper in Section
VL

II. LITERATURE REVIEWS

Gupta and Kumar in their seminal paper [1] proved that the
throughput capacity in wireless ad hoc network is not scalable.
Subsequently, many researchers have focused on identifying
techniques that could alter this conclusion. Recently, Ozgur et
al. [4] proposed a hierarchical cooperation technique based on
virtual MIMO to achieve linear per source-destination capac-
ity. Cooperation can be extended to the simultaneous transmis-
sion and reception at the various nodes in the network, which
is called many-to-many communication and can result in signif-
icant improvement in capacity [3].

There has been some work focused on the multicast capac-
ity in wireless ad hoc networks. Since the original paper by
Ahiswede et al. [5], most of the research on network coding has
focused on directed networks, where each communication link
has a fixed direction. Li and Li {19] were the first to study the
benefits of network coding in undirected networks, where each
communication link is bidirectional. Their result [19] shows
that, for a single unicast or broadcast session, there is no im-
provement with respect to throughput due to network coding. In
the case of a single multicast session, such an improvement is
bounded by a factor of two. Meanwhile, the authors of [12],
[13], and [14] studied the throughput capacity of NC in wire-
less ad hoc networks. However, the authors of [12], {13], and
[14] employ network models that are fundamentally inconsistent
with the more commonly accepted assumptions of ad-hoc net-
works [1]. Specifically, the model constraints of [12]-[14], [19],
and [20] differ as follows: All the prior works assume a single
source for unicast, multicast, or even broadcast. Aly ez al. [13]
and Kong et al. [14] differentiate the total nodes into source set,
relay set and destination set. They do not allow all of the nodes
to concurrently serve as sources, relays or destinations, as al-
lowed in the work by Gupta and Kumar [1]. Furthermore, these
results do not consider the impact of interference in wireless ad
hoc networks.

Specifically, If sources, relays and destinations are strictly dif-
ferent, the authors of [13] use max-flow min-cut of network cod-
ing. But if they are not, it will make the problem much harder
to solve. This paper discussed the impact of MPT and/or MPR
ability while [13] is totally connected graph with no transmis-
sion range flavor in wireless network environment.

In the absence of interference, the communication scenario
equates an ideal case where a node can simultaneously trans-
mit and receive from multiple nodes. Interference cancelation
techniques such as MPT and MPR indeed enable nodes with the
ability of multi-point communication within a communication
range of T'(n). Thus, the model assumptions in [12], [13], and
[14] at the very least assume that nodes are capable of MPT and
MPR. Similarly, works such as physical-layer network coding

(PNC) [11] by Zhang et al. and analog network coding [10] by
Katti et al. also implicitly assume the ability of MPT and MPR.

Finally, beyond the work of [21], we revised considerately up-
per bound proof as area argnment instead of tree one and used
bins and balls argument for lower bound compared with [21].
The authors of [22] and [23] analyzed the contribution of NC it-
self while this paper proves that utilization of MPT and/or MPR
with NC in wireless networks achieves the same gain as MPT
and/or MPR.

III. NETWORK MODEL, DEFINITIONS, AND
PRELIMINARIES

We assume a random wireless ad hoc network with n nodes
distributed uniformly in a unit-square network area. Our capac-
ity analysis is based on the protocol model for dense and static
networks, introduced by Gupta and Kumar [1]. The case of what
we call point-to-point communication corresponds to the origi-
nal protocol model.

Definition 1: The protocol model of point-to-point commu-
nication.

All nodes use a common transmission range r(n) for all their
communication. Node X; can successfully transmit to node X;
if for any node Xy, k # 1, that transmits at the same time as X,
itis true that | X; — X;| < r(n) and | Xy — X;| > (14 A)r(n),
where, /\ is a constant guard distance.

We make the following extensions to account for MPT and MPR
capabilities at the transmitters and receivers, respectively. In
wireless ad hoc networks with MPT (MPR) capability, any
transmitter (receiver) node can transmit {receive) different infor-
mation simultaneously to (from) multiple nodes within the circle
whose radius is T'(n) [18]. For the rest of this paper, we assume
for simplicity that T(n) = 7(n). We assume that it is possible
to achieve ideal MPT and MPR. In a non-ideal scenario, real-
ization of MPT or MPR leads to a loss in the rate provided to
an individual receiver. Certain special cases in the rate region
can also be expressed as reduction in transmission range, i.e.,
T{n) < r(n). Inidealized conditions, 7(n) = T'(n). We further
assume that nodes cannot transmit and receive at the same time,
which is equivalent to half-duplex communications [1]. From
system point of view, MPT and MPR are dual if we consider the
source and destination duality.

Definition 2: Feasible throughput capacity.

In a wireless ad hoc network with n nodes where each source
transmits its packets to m destinations, a throughput of C,,(n)
bits per second for each node is feasible if there is a spatial and
temporal scheme for scheduling transmissions, such that, by op-
erating the network in a multi-hop fashion and buffering at in-
termediate nodes when awaiting transmission, every node can
send Cy, (n) bits per second on average to its m chosen destina-
tion nodes. That is, there is a Ty < oo such that in every time
interval [(: — 1)Tp, i7] every node can send ToCyy, (1) bits to its
corresponding destination nodes.

Definition 3: Order of throughput capacity.

Cyn{n) is said to be of order ©(f(n)) bits/second if there exist
deterministic positive constants ¢ and ¢’ such that
limy 00 Prob (Cry(n) = cf{n) is feasible) = 1

1
lim inf,, o0 Prob (Cy,(n) = ¢ f(n) is feasible) < 1. M
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O Sources, relays, or destinations

¢ Routing route

Fig. 1. Area coverage by one multicast tree.

Definition 4: Euclidean minimum spanning tree (EMST).
Consider a connected undirected graph G = (V, E), where V
and E are sets of vertices and edges in the graph G, respectively.
The EMST of ( is a spanning tree of G with the minimum sum
of Euclidean distances between connected vertices of this tree.

Definition 5: Minimum Euclidean multicast tree (MEMT).

The network can be described a connected graph Gry(V, Er(ny)

where the vertices represent the nodes in the network and the
edge set is determined by the transmission range T'(n) such
that there is an edge between any two vertices separated by
a distance less than T'(n). Let, s € V be a source and
D, = ds,,ds,, - ,ds, be m multicast destinations, then an
MEMT(T(n)) is an edge-minimal tree in G, that spans
D,Js.

Definition 6: Minimum area multicast tree (MAMT).

We define the area of any tree in G'p(,,) as the area of the re-
gion formed by taking the union of circles, of radius 7T'(n),
placed at each node in the tree. Let, s € V be a source
and D, = d,,,d,,, - ,ds,, be m multicast destinations, then
an MAMT(T'(n)) is an area-minimal tree in G, that spans
D, Js.

Note that EMST and MEMT are spanning trees which in-
cludes only source and destinations, while MAMT is related to
a real routing tree which includes relays.

Definition 7: Total active area (TAA (A, T(n))).

The TAA(A,T(n)) is the total area of the network multiplied
by the average maximum number of simultaneous transmissions
and receptions inside a communication region of ©(T?(n)).

It can be shown that this value has an upper bound of O(1),
O(nT?(n)) and O(n?T*(n)) for point-to-point, MPR (or MPT)
and MPR combined with MPT respectively.

In the rest of this paper, || ;|| denotes the total Euclidean dis-
tance of a tree T,.; #1} is used to denote the total number of
vertices (nodes) in a tree 7T,-; S(T;) denotes the area of tree T},
covered; and ||T;.|| is used for the statistical average of the total
Euclidean distance of a tree.

To compute the multicast capacity, we use the relationship be-
tween MAMT and EMST. Steele [24] determined a tight bound
for |[EMST]| for a group of m nodes when m > 1, which we
restate in the following lemma.
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Lemma 1: Let f(x) denote the node probability distribution
function in the network area. Then, for large values of m and
d > 1, the ||EMST]| is tight bounded as

[EMST|| = @(o(d)m% f(x)ddldx> )
Rd

where d is the dimension of the network. Note that both ¢(d) and
the integral are constant values and not functions of m. When
d = 2, then [|[EMST|| = © (/m).

Given that the distribution of nodes in a random network is
uniform, if there are n nodes in a unit square, then the density of
nodes equals n. Hence, if |S| denotes the area of space region S,
the expected number of the nodes, F(Ng), in this area is given
by E(Ng) = n|S|. Let N; be a random variable defining the
number of nodes in S;. Then, for the family of variables /V;,
we have the following standard results known as the Chernoff
bounds [25]:

Lemma 2: Chernoff bound

n|S;|
« Forany § >0, P[N; > (1+0)n|S;|] < (W) i

e Forany 0 < 6 < 1, P[N; < (1 —8)n|S;|] < e~ 2nSild"
Combining these two inequalities we have, for any 0 < 0 < 1:

P[|N; — n|S;|| > on|S;[} < e oI5| 3)
where 8 = (1 + 6) In(1 + J) — 6 in the case of the first bound,
and # = §2/2 in the case of the second bound.

Therefore, for any 6 > 0, there exist constants such that de-
viations from the mean by more than these constants occur with
probability approaching zero as n — oc. It follows that, with
high probability (w.h.p.)?, we can get a very sharp concentration
on the number of nodes in an area, so we can find the achievable
lower bound w.h.p., provided that the upper bound (mean) is
given. In the following sections, we first derive the upper bound,
and then use the Chernoff bound to prove the achievable lower
bound.

In [5], it was proved that the max-flow min-cut is equal to
multicast capacity of a directed graph with single source. The di-
rected graph model is more applicable for wired networks. How-
ever, in this work we wish to study the utility of NC in a wireless
environment where links are bidirectional [12], [13].

In a single-source network, the cut capacity is equal to
the maximum flow. Thus, [13] provides an upper bound on
the multicast capacity of a network with single source and
NC+MPT+MPR capability. However, in [12], [13], and [14],
the source, relays and destinations are strictly different and in-
formation can not be transmitted directly towards the destina-
tions. These two assumptions will be eventually relaxed in this
paper.

Before we analyze the scaling law of throughput capacity
with NC, MPT and MPR in wireless ad hoc networks, we want
to illustrate one example to claim the consequences of MPT and
MPR as Fig. 2. From this figure, we observe that combination
of MPT, MPR and NC can increase the information flow and the
gain is equivalent to only combining MPT and MPR. Intuitively,
we can conjecture that the gain of NC is given actually by MPT

2An event happens with high probability if the probability of this event is
greater than 1 — 1/n when n goes to infinity.
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Fig. 2. One example for point-to-point communication, MPT, MPR, and NC: (a) Point-to-point (4), (b) NC (3}, (c) MPT + MPR (2), and (d) MPT +

MPR + NC (2).
Table 1. Abbreviation table.
EMST Buclidean minimum spanning tree
MEMT Minimum Euclidean multicast tree
MEMTC | Minimum Euclidean multicast tree cells
MAMT Minimum area multicast tree
TAA Total active area
Transmission range in
r(n) point-to-point communication
T(n) Transceiver range in MPT and MPR

and/or MPR which will be proved in the following sections. In
Section IV and V, we will prove that the scaling law of MPT
and MPR abilities without and with NC respectively, and then
show they are the same order.

Table 1 summarizes all the abbreviations that are used in this

paper.

IV. THE THROUGHPUT CAPACITY WITH MPT AND
MPR

In this section, we compute the scaling laws in random geo-
metric graphs when nodes are endowed with MPR and MPT ca-
pabilities. Our approach is based on the results in [26] for point-
to-point communication and extending it to MPR and MPT
cases.

A. Upper Bound

The following Lemma provides an upper bound for the
per-session capacity as a function of TAA(A,T(n)) and
S (MAMT(T'(n))). Essentially, S (MAMT(T'(n))) equals the
minimum area consumed to multicast a packet to m destinations
(see Fig. 1), and TAA{A, T'(n)) represents the maximum area
which can be supported when MPT and MPR are used.

Lemma 3: In random dense wireless ad hoc networks, the
per-node throughput capacity of multicast with MPT and MPR
is givenby O (lM).

7 S(MAMT(T'(n)))
Proof: With MPT and MPR, we observe that

S (MAMT(T'(n))) represents the total area required to transmit
information from a multicast source to all its m destinations,
The ratio between average total active area, TAA(A, T'(n)), and
S (MAMT(T'(n))) represents the average number of simulta-
neous multicast communications that can occur in the network.
Normalizing this ratio by n provides per-node capacity. a

Lemma 3 provides the upper bound for the multicast
throughput capacity with MPT and MPR as a function of
S (MAMT(T'(n))) and TAA(A, T'(n})). In order to compute the

upper bound, we derive the upper bound of TAA(A, T'(n)) and
the lower bound of S (MAMT(T'(n))). Combining these results
provides an upper bound for the multicast throughput capacity
with MPT and MPR.

Lemma 4: The average area of a multicast tree with trans-
mission range T'(n), S (MAMT(T'(n))} is lower bounded by
Q(T'(n)), when m is a constant value.

Proof: From [27], it can be deduced that S (MAMT(T'(n)))
is lower bounded as Q2 ( ||EMST1|T(n)). Even for the case of

the minimum value for T'(n) to assure connectivity, this upper
bound is guaranteed for constant values of . Lemma 1 states
that ||EMST| = © (y/m) = ©(1)*. The proof follows immedi-
ately. O
Lemma 5: The average total active area, TAA(A, T'(n)), has
the following upper bound in networks with MPT and MPR.

TAA(A,T(n)) = O (n*T*(n)). “
Proof: As discussed earlier, the TAA(A, T'(n)) for point-
to-point communication is equal to 1 since for each circle of
radius T'(n), there is only a single pair of transmitter-receiver
nodes (see Fig. 3(a)). For the case of MPR and MPT, the
number of nodes in a circle of radius 7(n) is upper bounded
as O(nT?(n)). This is also upper bound for the number of
transmitters or receivers in this region. The upper bound for
TAA(A, T (n)) is achieved when the maximum number of trans-
mitters and receivers are employed in this circle. Fig. 3(b)
demonstrates an example that can achieve this upper bound si-
multaneously for transmitters and receivers. Let a circle of ra-
dius T'(n)/2 located at the center of another circle of radius
T(n). Note that with this construction, any two nodes inside
the small circle are connected. If we randomly assign half of the
nodes inside the small circle as transmitters and the other half
as receiver nodes, then the average number of transmitters and
receivers in this circle are proportional to ©(nT%(n)). Given
the fact that this value also is the maximum possible number of
transmitter and receiver nodes, the result follows immediately.
)
Combining Lemmas 3, 4, and 5, we can compute the upper
bound for multicast capacity of MPT and MPR.
Theorem 1: In wireless ad hoc networks with MPT and
MPR, the upper bound on the per-node throughput capacity of
multicast with constant number of destinations is

Cp(n) =0 (nT?’(n)) . (5)

*m is a constant value.
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O Receiver

X Transmitter

O Receiver
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Fig. 3. Upper bound of total available area based on protocol model: (a)
Point-to-point communication and (b) MPT and MPR.

B. Lower Bound

To derive an achievable lower bound, we use a TDMA
scheme for random dense wireless ad hoc networks similar to
the approach used in [28] and [29].

We first divide the network area into square cells. Each square
cell has an area of 72 (n) /2, which makes the diagonal length of
square equal to T'(n), as shown in Fig. 4. Under this condition,
connectivity inside all cells is guaranteed and all nodes inside a
cell are within communication range of each other. We build a
cell graph over the cells that are occupied with at least one vertex
(node). Two cells are connected if there exist a pair of nodes, one
in each cell, that are less than or equal to T'(n) distance apart.
Because the whole network is connected when T'(n) = r(n) =

Q (\ /logn/ n), it follows that the cell graph is connected [28],
[29].

To satisfy the MPT and MPR protocol model, we organize
cells in groups so that simultaneous transmissions within each
group does not violate the conditions for successful communi-
cation in the MPT and MPR protocol model. Let L represent
the minimum number of cell separations in each group of cells
that communicate simultaneously. Utilizing the protocol model,
L satisfies the following condition:

T(n) + (1 + A)T(n)
T(n)/V2

L=[1+ ]:[1+\/§(2+A)1‘ (6)

If we divide time into L? time slots and assign each time slot
to a single group of cells, interference is avoided and the pro-
tocol model is satisfied. The separation example can be shown
for the upper two receiver circles in Fig. 4. For the MPT and
MPR protocol model, the distance between two adjacent receiv-
ing nodes is (2 + A)T'(n). Because this distance is smaller than
(L —1)T'(n), this organization of cells guarantees that the MPT
and MPR protocol model is satisfied. Fig. 4 represents one of
these groups with a cross sign inside those cells for L = 4.
We can derive an achievable multicast capacity for MPT and
MPR by taking advantage of this cell arrangement and TDMA
scheme. The capacity reduction caused by the TDMA scheme
is a constant factor and does not change the order capacity of the
network.

Next, our objective is to find an achievable lower bound using
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Fig. 4. Cell construction used to derive a lower bound on capacity.

the Chernoff bound, such that the distribution of the number of
edges in this unit space is sharply concentrated around its mean,
and hence the actual number of simultaneous transmissions oc-
curring in the unit space in a randomly chosen network is indeed
O(n*T?%(n)) whp..

Lemma 6: The circular area of radius T'(n) corresponding
to the transceiver range of any node j in the cross area in Fig. 4
contains ©(nT?(n)) nodes w.h.p., and is uniformly distributed
for all values of j, 1 < j < 1/(LT(n)/v?2)2.

Proof: The statement of this lemma can be expressed as

(LT(n;/\/i)z
lim P (| IN,—E(N)| <SE(N;)| =1 (D

where N; and E (N;) are the random variables that represent
the number of transmitters in the receiver circle of radius 7°(n)
centered by the receiver j and the expected value of this random
variable, respectively and § is a positive arbitrarily small value
close to zero.

From the Chernoff bound in (3), for any given 0 < § < 1,
we can find § > 0 such that P [|N; — E(N;)| > §E(N;)] <
e~?F(N;) Thus, we can conclude that the probability that the
value of the random variable N; deviates by an arbitrarily small
constant value from the mean tends to zero as n — oo. This is a

YN
key step in showing that when all the events () ;Z(W v2) |N; —

E(N;)| < 0E(Nj;) occur simultaneously, then all N;’s con-
verge uniformly to their expected values. Utilizing the union
bound, we arrive at

(LT(Tj/ﬁ)Q
p () IN; = E(N;)| < 6E(N))
j=1
1
(LT(n)/V2)?
=1-P {J INj=E(N)|>E(N;)
i=1
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>1— Y P[N;—E(N))| > SE(N;)]
j=1
1 —OE(N;)
>l - e @ ir, 8
(LT (n) V2P ®
Given that E(N;) = mnT%(n), then we have
TEGVEE
lim P Q IN; — E(N;)| < 8B(N;)
]:
> 1o lim 0T, 9)
n=oo (LT (n)/v/2)?
e . .. . . —0rnT2(n)
Utilizing the connectivity criterion, lim,, oo ETZ(W_ — 0,

which finishes the proof.

Furthermore, we can arrange all of the nodes in the left side
of the corresponding transceiver circle be the transmitters, and
all of the nodes in the right side of the corresponding transceiver
circle be the receivers. Thus, we arrive at the following lemma.

Lemma 7: In the unit square area for a wireless ad hoc net-
work shown in Fig. 4, the total number of transmitter-receiver
links (simultaneous transmissions) is 2 (n?T%(n)).

Proof: From Lemma 6, for any node in the cross cell in
the whole network shown in Fig. 4, there are ©(nT?(n)) nodes
in the transceiver circle. We divided the total nodes into two
categories, transmitters in the left of the transceiver circles and
receivers in the right of the transceiver circles. To guarantee all
of the transmitters and receivers are in the transceiver range, we
only consider the nodes in the circle with radius 7'(n)/2. Be-
cause of the MPT and MPR capabilities, so that every transmit-
ter in the left of the transceiver circle with T'(n)/2 radius can
transmit successfully to every receiver in the right, then the to-
tal number of successful transmissions is 72n%7T*(n)/16 which
is the achievable lower bound. The actual number of the trans-
missions can be much larger than this because we only consider
T'(n)/2 instead of T'(n). Using the Chernoff bound in (3) and
Lemma 6, we can show that the total number of successful trans-
missions is

2,274
0 (M@——z) =Q(n*T2(n)).  (10)
16 (LT(n)/V?2)
O

The above results enables us to obtain the following achiev-
able lower bound.

Let us define #MEMTC(7'(n)) as the total number of cells
that contain all the nodes in a multicast group. Note that
H#MEMTC(T(n)) also represents the average number of chan-
nel uses required to transport a packet from a source to its m
destinations in a multicast tree. The following lemma establishes
the achievable lower bound for the multicast throughput capac-
ity of MPT and MPR as a function of #MEMTC(T(n)).

Lemma 8: The achievable lower bound of the multicast ca-
pacity is given by

nT?(n)
#MEMTC(T(n)) )

(1D

Cm(”’) = (

Proof: There are (T'(n)/+/2)~2 cells in the unit square
network area. From the definition of #MEMTC(T(n)) and the
fact that our TDMA scheme does not change the order capacity,
it is clear that there are at most in the order of #MEMTC(T'(n))
interfering cells for multicast communication. Hence, from
Lemma 7, there are a total of © (n?T2(n)) nodes transmitting
simultaneously, which are distributed over all the (T'(n)/v/2) 2
cells. Accordingly, the total lower bound capacity is given by

Q ((n2T2(n)) (#MEMTC(T(n))) _1) which is the ratio be-

tween the total number of active links at any time divided by the
number of channel uses required to complete a multicast com-
munication group. Normalizing this value by total number of
nodes in the network, n, proves the lemma. O

Given the above lemma, to express the lower bound of C,, (n)
as a function of network parameters, we need to compute the
upper bound of #MEMTC(T'(n)), which we do next.

Lemma 9: The average number of cells covered by a multi-
cast tree, MEMTC(T (1)), is upper bounded as

vm 1

#MEMTC(T(n)) = O (T(n)) =0 (T(n)) .
Proof:  Because T(n) is the transceiver range of the
network, the maximum number of cells for this multicast
tree must be O (ymT~'(n)), ie., #MEMTC (T(n)) =
O (y/mT~1(n)). This upper bound can be achieved only if ev-
ery two adjacent nodes in the muiticast tree belong to two dif-
ferent cells in the network. However, in practice, it is possible
that some adjacent nodes in multicast tree locate in a single cell.
Consequently, this value is upper bound as described in (12).
Note that the optimum multicast tree in wireless ad hoc network,
may not necessarily cover the same route. However, since our
intention is to derive the achievable lower bound, we can design
a scheme that follows the MEMT routing, so that each relay in
that real routing tree is in the cells which is crossed by MEMT
or the neighbor cell of MEMT. Therefore, we count all of those
cells which include those real relays as MEMTC (see Fig. 5).
Since as we describe later, this technique will provide the same
order bound for the capacity as the upper bound, clearly the op-
timum multicast tree cannot achieve lower order bound. ]

Combining Lemmas 8 and 9, we arrive at the achievable lower
bound of the multicast throughput capacity in dense random
wireless ad hoc networks with MPT and MPR.

Theorem 2: When the number of the destinations m is a con-
stant, the achievable lower bound of the multicast throughput
capacity with MPT and MPR is

(12)

Cr(n) = Q (nT%(n)). (13)
Next, we discuss the routing scheme to achieve the lower
bound capacity which is similar to the scheme used in [30]. Ac-
cording to our model, each multicast session creates a multi-
cast tree #MEMT(T'(n)) to connect the source and destina-
tions. The trees are denoted as T;s, where ¢ = 1,2,---,n. The
routing scheme between source and destination is such that
packets are forwarded by using cells that are intersected only
by 7;. There is a bound on the number of trees that each cell
needs to serve, which means that we can bound the probability
that the trees intersects a particular cell.
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MEMTC is counted when a source, destination or relay is inside a cell.

Fig. 5. lllustration of #MEMTC(T'(n)), the Euclidean distance of neigh-
bor relay is smaller than T'(n).

We will prove the following lemma with MPT and MPR case
for multicast communications in the follows.

Lemma 10: We have, for any T'(n) = 2 <\ /log n/n),

lim Prob (sup {Number of trees T;s intersecting Si, ; }

noee (k,5)

=O0(T(n) ) =1. (14)
Proof: For every tree 1 and cell Sk, j,, with Lemma 9,
p =
= 0 (TQ(n)#MEMTC(T(n)))
= O(T(n)).

Prob{Tree T; intersects Sk, j, }

(15)

First, we bound the number of trees served by one particu-
lar cell S, ;,. Define independent identically distributed (i.i.d.)
random variables I;, 1 < i < n, as follows:

(16)

1, if T; intersects Sk, j,
I; = : '
0, if not.

Then, Prob(I; = 1) = p, Vi, where p is defined in (15). De-
note by Z,, the total number of trees served by Sk, j,. Then,
Zy =1I1 + Is + - -+ + I,. Thus, by the Chernoff bounds [25],
for all positive b and a, Prob(Z, > b) < E—[:Zbﬂ
1+ x <e*, wehave

Because

Ble*®] = (L+(e® —1)p)" < exp(n(e® —1)p) (17)
= Ofexp(e® — 1)nT(n)). (18)

Now, choosing b = ©O(nT(n)), we get Prob(Z, =
Q(nT'(n))) = O(exp(nT'(n))).
Thus by the union bound, we have

Prob (Some cell intersects 2(nT'(n)) trees )
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IN

Z Prob (Cell Sy, intersects more than 2(nT'(n)) trees )
k:’j

- 0 <T2+n) exp(—nT(n))> .

The right hand side tends to zero for T'(n) = Q (\ /log n/n)

as n goes to infinity. O

We know that there exists a transmitting schedule such that
in every L? (L is constant) slots, each cell transmits at rate W
bits/second with maximum transmission distance T'(n). There-
fore, the rate for each cellis © (n?T*(n)) W/L?. From Lemma
10, each cell needs to transmit at rate O (C,(n)nT'(n)) with
probability approaching one. In order to accommodate this re-
quirement by all cells, we need

Crn(n)nT(n) = Q ((n*T*(n)) W/L?).

19)

(20)

Thus, we have proven the achievable throughput for Theorem

2 in order to guarantee each cell can support this capacity. It can
be written as

Crm(n) = Q (nT?(n)). (21)

We have proved there is no congestion in relay nodes. Fur-
thermore, we will prove there is not any congestion in destina-
tion. Suppose each source selects a destination randomly and in
dependently. Then we will prove with high probability, a node
can be destination for at most 3logn/loglogn sources. This
problem is similar to the “bins and balls problems” in [31].

Lemma 11: The probability of a particular destination hav-
ing k sources selected is

k
lim Prob|destination 7 has at least k sources| < (E) (22)

n—oc k

Proof: 1f we look at any subset of sources of size k, then
the probability that the subset of sources select destination ¢ is
(£)*. We then take a union bound of these probabilities over all
(%) subsets of size k. The events we are summing over, though,
are not disjoint. Therefore, we can only show that the probabil-
ity of a destination having at least k balls is at most (}) (7) * Us
ing Stirling’s approximation lim,,_, ——1 - =1, we have

o (%)
n n k
nhjgo (k)e( 1]2 =1 (23)
()
which proved the lemma. O

Lemma 12: With high probability, i.e., with probability
greater than 1 — 1/n, there exist at most 3logn/loglogn
sources for each destination.

Proof- Let k = 3logn/loglogn. From Lemma 11, we
have

lim Prob|destination ¢ has at least k sources]

n—oo
3logn
< <6>k _ (eloglogn \ estsn
- k) 3logn
3logn
< exp| ———(logloglogn — loglogn)
loglogn

exp <3 logn +

3lognlogloglogn
loglogn
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1
< exp(—2logn) = = (24)
Using union bound, we have
lim Prob[any destination has at least k sources]
n—oo
< ni _ 1 (25)
~n2

which implies that

lim Problall destinations have at most & sources] > 1 — i

n—rod n
(26)
It proved the lemma. O
For MPTR unicast, we require that for all destinations, there
does not exist any one whose traffic load congestion is larger
than the total throughput it can support. It means that the max-
imum throughput for each destination should always be greater
than the total traffic load. In MPTR case, the total throughput
of each destination is n7?(n). The traffic load congestion for
each destination is the multiplication of throughput per node of
nT3(n) and the maximum possible sources that select a node,

i.e., 3logn/loglog n. Hence,

3logn
2 3
nT?(n} > nT (n)log og 27
which is
loglogn
Tn)=0/| —————}.
(n) = 0 (“EER) e8)
Therefore, T'(n) is bounded as
0 logny} T(n) =0 loglogn (29)
n | B logn /°

The left side is the connectivity constraint and the right side
is the traffic load constraint to guarantee that C(n) = nT3(n)
can be achieved.

C. Tight Bound and Comparison with Point-to-Point Communi-
cation

From Theorems 1 and 2, we can provide a tight bound
throughput capacity for multicasting when nodes have MPT and
MPR capabilities in dense random wireless ad hoc networks as
follows.

Theorem 3: The throughput capacity of multicast with con-
stant number m destinations (i.e., m is not a function of n) in a
random dense wireless ad hoc network with MPT and MPR is

C,,%P'“MPR ( n )

=6 (nT3(n)) . (30)

The transceiver range of MPT and MPR should satisfy

° (J@) =T(n)=0 (lo_lg{go%)

Following similar proof procedure, we can derive the tight
capacity for MPT or MPR only in the following theorem, which
has been shown in [32].

Theorem 4: The throughput capacity of multicast with con-
stant m number of destinations in a random dense wireless ad
hoc network with MPT or MPR is given by

Cot(n) = CpR(n) = © (T(n)) - 31)

The transceiver range of MPT and MPR should satisfy
Q(y/2E2 ) = T(n) = O (‘oplean).

The multicast throughput capacity with point-to-point com-
munication is given by the following lemma [26].

Lemma 13: In multicast with a constant m number of desti-
nations, without MPR or MPR ability, the capacity is

where r(n) = Q(y/logn/n) and PTP means point-to-point
communication. When 7(n) = 6(,/log n/n) for the minimum
transmission range to guarantee the connectivity, then we obtain
the maximum capacity as C¥T7M¥ () = ©(1/y/nlogn).

Combining Theorem 3 with Lemma 13, the gain of through-
put capacity with MPT and MPR capability in wireless ad hoc
networks can be stated as follows.

Theorem 5;: In multicast with a constant m number of
destinations, with MPT and MPR ability, the gain of per-
node throughput capacity compared with point-to-point com-
munication is ©(n2T*(n) (with only MPT or MPR, the gain
is ©(nT?(n)), where Q(y/logn/n) = T(n) = r(n) =
O(loglogn/logn). When T'(n) = ©+/logn/n), the gain of
per-node capacity is at least ©(log? n) (with only MPT or MPR,
the gain is G(logn)).

(32)

V. CAPACITY WITH NC, MPT AND MPR WITH
FINITE M

We now study the multi-source multicast capacity of a wire-
less network when nodes use NC, MPT and MPR. The results
we present serve as an upper-bound for what can be achieved
by combining NC, MPT and MPR in the presence of interfer-
ence. Our arguments are generic and can be used to deduce up-
per bounds for the multicast capacity of other interesting cases
where NC is used along with only one of MPT or MPR, or even
the scenario where NC is used with traditional point-to-point
communication.

In the proof, we use the characteristic of network coding
which does not change the capacity information flow across the
sparsity cut and has been widely used in [9] and [18].

We deduce the bounds for the case of multi-source multicas-
ting by reducing it to a suitable unicast routing problem. Un-
der the reduction, an upper bound for the unicast problem also
serves for the original multicast routing problem. Thus consider
the following simple yet powerful lemma.

Lemma 14: Consider a network with n nodes V =
{e1,...,a,} and k multicast sessions. Each session consists
of one of the n nodes acting as a source with an arbitrary finite
subset of V acting as the set of destinations. Let s; be the source
of the ith session and let D; = {di1,. .., dim, } be the set of m;
destinations. Let A = [A1,... A;] be a feasible rate vector, i.e.,
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Fig. 6. For a receiver at location (z,y), all the nodes in the shaded
region S, can send a message successfully and simultaneously.

there exists a joint routing-coding-scheduling scheme that can
realize a throughput of \; for the i™ session. Then A is also a
feasible vector for any unicast routing problem in the same net-
work such that the traffic consists of & unicast sessions with s;
being the source of the ith session and the destination d; is any
arbitrary element of the set D;.

If a multicast capacity from a source to multiple destinations
is feasible, then clearly it is feasible to achieve the same capacity
to any one arbitrarily chosen node from this set of destinations.

Lemma 15: Consider a random geometric network with n
nodes distributed uniformly in a unit square. Consider a decom-
position of the unit-square into two disjoint regions R and R°¢
such that the area of each region is of order ©(1). Now, con-
sider a multicast traffic scenario consisting of n sessions with
each node being the source of a session and m randomly chosen
nodes being the destination of the session. We say that a source
satisfies property P if the source belongs to region R and at least
one of its destination belongs to R° OR if the source belongs to
region R and at least one of its destination belongs to R. It can
be easily shown that the number of sources satisfying property
P are 6(n).

Definition 8: Sparsity Cut for Random Networks
In graph theory, a cut I is a partition of the vertices (i.e., nodes in
the wireless networks) into two sets. The cut capacity is defined
to be the sum of bandwidth of the edges crossing the cut. A
min-cut is a cut whose capacity is the minimum value of all
cuts. In wireless networks, we use sparsity cut instead of min-
cut [9]. In a unit square area, the cut length [ is defined as the
length of the cut line segment. The cut line segment that we
consider have zero width such that no node lies on it. A sparsity
cut for a random network is defined as a cut induced by the line
segment with the minimum length that separates the region into
two subregions. For the square deployment region illustrated in
Fig. 6, the middle line induces a sparsity cut.

Since nodes are uniformly deployed in a random network, a
sparsity cut captures the traffic bottleneck of these random net-
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works. The cut capacity represents the information rate that the
nodes from one side of the cut as a whole can deliver to the
nodes at the other side. This is the maximum information (bits
per second) that can be transmitted across the cut from left to
right (or from right to left). The sparsity cut capacity is up-
per bounded by deriving the maximum number of simultaneous
transmissions across the cut.

Lemma 16: The capacity of a sparsity cut I' for a unit re-
gion has an upper bound of O (T7(n)), O (nT(n)), and
O (n*T3(n)) for point-to-point communication with network
coding, MPT or MPR with network coding and MPT+MPR with
network coding respectively.

Proof: The capacity for the point-to-point communication
with network coding has been derived in [9] as O (T(n)).
According to the protocol model of [1], the disks of radius T'(n)
centered at each receiver are disjoint. This fact has been utilized
in [9]. However, [1] does not consider many-to-one (or one-to-
many) communications, which is the case for MPR (or MPT)
scheme. Hence, we need some additional arguments to prove
the remaining claims.

Let us consider the combination of only MPR with NC. The
cut capacity is upper bounded by the maximum number of si-
multaneous transmissions across the cut. It is easy to see in Fig.
6 that all the nodes located in the shaded area S, can send their
packets to the receiver node located at (x, y). These nodes lie in
the left side of the cut I" within an area called S, and the as-
sumption is that all these nodes are sending packets to the right
side of the cut I". For a node at location (z, i), any node in the
disk of radius 7T'(n) can transmit information to this receiver si-
multaneously and the node can successfully decode those pack-
ets. In order to obtain an upper bound, we only need to consider
edges that cross the cut. Let’s first consider all possible nodes
that can transmit to the receiver node in the Sy, region. The
average number of transmitters located in Sg, is nS;,. The
number of nodes that are able to transmit at the same time from
left to right is upper bounded as a function of Sg,,.

The area of S, is computed as

Sey = %ﬂTQ(n)—Tz(n)sin(g>cos<g>

1
= §T2(n)(9 —sin6). (33)
This area is maximized when 6 = .
1 2
o??gxﬂ[smy] = §7TT (n). (34)

For the case of MPR (or MPT) with network coding, the disk
with radius T'(n) centered at any receiver(transmitter) should be
disjoint from the other disks centered at the other receivers [9],
[18]. Thus, the total number of nodes that can send packets
across the cut is upper bounded as

lr 171'T2 (n)n = c1lrnT (n)

B+ A)T() 2 (35)

where ¢; = 7/2(2 + A). Similar arguments can be used to
bound the cut-capacity when only MPT is combined with NC.



534 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 13, NO. 5, OCTOBER, 2011

Now, let us consider the case of combining MPT+MPR
with network coding. We utilize the fact that each node has a
maximum of © (nT2(n)) neighbors, which implies that each
node can simultaneously receive packets from a maximum of
© (nT?(n)) transmitters. Moreover, any node that receives
transmission from across the cut I' has to lie in the region en-
closed by the dotted line I', on the right side in Fig. 6, where I,
is at a T'(n) from ", Thus, the rectangular region enclosed by I'
and I, has an area of ©(7'(n)). Hence, an average of ©(nT'(n))
nodes can receive packets from across the cut. Therefore, the to-
tal number of transmissions across the cut are bounded by

O (nT(n)nT?(n)) = O (n*T3(n)). (36)

a

Theorem 6: In a wireless ad hoc network formed by n nodes
distributed randomly in a unit square with traffic formed by each
node acting as source for a multicast sessions with m = (1)
randomly chosen nodes as destinations, the per-session multi-
cast capacities are

NC+PTP __ 1
Cn™ =0 (nT<n> !

CTI\rILC+MPT _ CTI\,IlC+MPR =0 (T(n)) ,
CTI\rILC+MPT+MPR =0 (nT3 (TL)) (37)
where NC + PTP denotes the use of NC with point-to-point com-
munication {no MPT or MPR), i.e., a node can only transmit or
receive at most one packet at a time.

Proof:  For any sparsity cut of the unit area, Lemmas 15
and 14 tell us that we can construct a unicast routing problem
satisfying the property that any rate for the unicast problem is
feasible for the original multicast problem and we have 9(n)
source-destination pairs across the cut. Thus, the capacity of the
sparsity cut provides a bound for the unicast problem, which can
in turn be used to provide an upper bound for the multicast prob-
lem. From Lemma 16, finally, we can extend such arguments
to show that the combination of NC+MPT (or NC+MPR) and
NC+MPT+MPR allows us to simultaneously transmit a max-
imum of O (nT'(n)) and O (n?T3(n)) packets across the cut
respectively. The result of the theorem then follows from the
fact that the cut capacity has to be divided among the O(n)
source-destination pairs across the cut. Finally, because mul-
ticast capacity must be upper bounded by the unicast capacity
which finishes the proof. o

VI. CONCLUSION

By combining the results from Theorems 3 and 6, the main
contribution of this paper is stated in the following theorem.

Theorem 7: In wireless ad hoc networks with multi-pair
multicast sessions and with a finite pumber of m destinations
for each source, the throughput capacity utilizing NC, MPT and
MPR capabilities for all nodes is the same order as when the
nodes are endowed only with MPT and/or MPR

CTMnFHNC ( TL) —
CxPR+NC (

o (n),

n) = Cp*(n),

CMPTAMER (1), (38)

Proof: Because from Theorems 3 and 1, we realize the
multicast capacity of NC with MPT and MPR is tightly bounded
by the tight bound of multicast capacity of MPT and MPR with-
out NC, so the multicast capacity of MPT and MPR with or
without NC are the same. ]

1t is also important to emphasize that, as Theorem 6 shows,
NC does not provide any order capacity gain for multi-source
multicasting when the size of receiver groups is m = ©(1) and
nodes use point-to-point communication. Hence, the result in
Theorem 7 implies that NC does not provide an order capacity
gain when MPT or MPR or combination of MPR and MPT is
used, and that MPT and MPR are the real contributing factors
for order capacity increases in wireless ad hoc networks.

Finally, it is not clear if there is any gain in multicast com-
munications when only NC is used in point-to-point commu-
nication scenario and the number of destinations in a multicast
group, m, is a function of n. This problem is important and will
be the subject of future investigation in identifying the actual
order capacity contribution of NC in wireless ad hoc networks.
1t is also important to note that NC provides many other advan-
tages in random wireless ad hoc networks for different applica-
tions such as secrecy that are not investigated in this paper.

CMP’NMPRH\IC ( ’fL)
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