DOI QR코드

DOI QR Code

A human monoclonal antibody $F_{ab}$ reactive to oxidized LDL and carbamylated LDL recognizes human and mouse atherosclerotic lesions

  • Jang, Young-Ju (Institute for Medical Science, Ajou Univ. School of Medicine) ;
  • Joo, Hee-Jae (Department of Pathology, Ajou University School of Medicine) ;
  • Yang, Jeong-In (Department of Gynecology, Ajou University School of Medicine) ;
  • Seo, Chang-Won (Institute for Medical Science, Ajou Univ. School of Medicine) ;
  • Chung, Kui-Yea (Institute for Medical Science, Ajou Univ. School of Medicine) ;
  • Lanza, Gregory M. (Department of Medicine, Cardiovascular Division, School of Medicine, Washington University in St. Louis) ;
  • Zhang, Huiying (Department of Medicine, Cardiovascular Division, School of Medicine, Washington University in St. Louis)
  • Received : 2011.02.16
  • Accepted : 2011.05.13
  • Published : 2011.12.31

Abstract

This study was undertaken to produce a $F_{ab}$ fragment of a human monoclonal antibody reactive to oxidized and carbamylated low-density lipoprotein (oxLDL and cLDL) using phage display technology. An analysis of DNA sequences of this $F_{ab}$, termed plaque 15,16-46 $F_{ab}$, revealed that the rearranged $V_H$ was highly mutated. Complementarity-determining regions of the $V_H$ showed a very high R/S ratio and contained many positively charged amino acids. In direct binding and competitive ELISA, the $F_{ab}$ reacted strongly with both MDA-LDL and Cu-oxLDL forms of oxLDL, and also showed high affinity for cLDL. Immunofluorescence and immunohistochemical analyses showed that this $F_{ab}$ positively stained atherosclerotic aortic plaques in $ApoE^{-/-}$ mice as well as those in patients with atherosclerosis. The $F_{ab}$ also showed positive staining in placental decidua from patients with preeclampsia. It is suggested that the plaque 15,16-46 $F_{ab}$ against oxLDL and cLDL might possibly be applicable for developing a diagnostic reagent for both human and rodent animal research to detect and characterize atherosclerotic disease progression in atherosclerotic lesions as well as exploring the pathogenesis of atherogenic diseases such as preeclampsia.

Keywords

References

  1. Apostolov EO, Shah SV, Ok E, Basnakian AG. 2007. Carbamylated low-density lipoprotein induces monocyte adhesion to endothelial cells through intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Arterioscler Thromb Vasc Biol. 27:826-832. https://doi.org/10.1161/01.ATV.0000258795.75121.8a
  2. Apostolov EO, Shah SV, Ray D, Basnakian AG. 2009. Scavenger receptors of endothelial cells mediate the uptake and cellular proatherogenic effects of carbamylated LDL. Arterioscler Thromb Vasc Biol. 29:1622- 1630. https://doi.org/10.1161/ATVBAHA.109.189795
  3. Asci G, Basci A, Shah SV, Basnakian A, Toz H, Ozkahya M, Duman S, Ok E. 2008. Carbamylated low-density lipoprotein induces proliferation and increases adhesion molecule expression of human coronary artery smooth muscle cells. Nephrology. 13:480-486. https://doi.org/10.1111/j.1440-1797.2008.00948.x
  4. Basu SK, Goldstein JL, Anderson GW, Brown MS. 1976. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci USA. 73:3178-182. https://doi.org/10.1073/pnas.73.9.3178
  5. Belo L, Santos-Silva A, Quintanilha A, Rebelo I. 2008. Similarities between pre-eclampsia and atherosclerosis: A protective effect of physical exercise? Curr Med Chem. 15:2223-2229. https://doi.org/10.2174/092986708785747553
  6. Choi K, Lee HS, Chung HK. 1998. Production and characterization of monoclonal antibodies to oxidized LDL. Exp Mol Med. 30:41-45. https://doi.org/10.1038/emm.1998.6
  7. Coker HA, Durham SR, Gould HJ. 2003. Local somatic hypermutation and class switch recombination in the nasal mucosa of allergic rhinitis patients. J Immunol. 171:5602-5610. https://doi.org/10.4049/jimmunol.171.10.5602
  8. Faviou E, Vourli G, Nounopoulos C, Zachari A, Dionyssiou- Asteriou A. 2005. Circulating oxidized low density lipoprotein, autoantibodies against them and homocysteine serum levels in diagnosis and estimation of severity of coronary artery disease. Free Radic Res. 39:419-429. https://doi.org/10.1080/10715760500072156
  9. Feng X, Yingmei Z, Ruifen X, Xie X, Tao L, Gao H, Gao Y, He Z, Wang H. 2010. Lipopolysaccharide up-regulates the expression of Fca/m receptor and promotes the binding of oxidized low-density lipoprotein and its IgM antibody complex to activated human macrophages. Atherosclerosis. 208:396-405. https://doi.org/10.1016/j.atherosclerosis.2009.07.035
  10. Fialova' L, Mikuli'kova' L, Malbohan I, Beneova' O, ti'pek S, Zima T, Zwinger A. 2002. Antibodies against oxidized low density lipoproteins in pregnant women. Physiol Res. 51:355-361.
  11. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. 1980. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA. 77:2214-2218. https://doi.org/10.1073/pnas.77.4.2214
  12. Goncalves I, Nitulescu M, Ares MPS, Fredrikson GN, Jansson B, Li Z-C, Nilsson J. 2009. Identification of the target for therapeutic recombinant anti-apoB-100 peptide antibodies in human atherosclerotic lesions. Atherosclerosis. 205:96-100. https://doi.org/10.1016/j.atherosclerosis.2008.11.020
  13. Hansson GK. 2005. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 352:1685-1695. https://doi.org/10.1056/NEJMra043430
  14. Harberland ME, Fong D, Cheng L. 1988. Malondialdehydealtered protein occurs in atheroma of watanabe heritable hyperlipidemic rabbits. Science. 241:215-218. https://doi.org/10.1126/science.2455346
  15. Hiki M, Shimada K, Ohmura H, Kiyanagi T, Kume A, Sumiyoshi K, Fukao K, Inoue N, Mokuno H, Miyazaki T, Daida H. 2009. Serum levels of remnant lipoprotein cholesterol and oxidized low-density lipoprotein in patients with coronary artery disease. J Cardiol. 53:108- 116. https://doi.org/10.1016/j.jjcc.2008.09.010
  16. Horkko S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA, Friedman P, Dennis EA, Curtiss LK, Palinski W, Witztum JL. 1999. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipidprotein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest. 103:117-128. https://doi.org/10.1172/JCI4533
  17. Itabe H, Takeshima E, Iwasakin H, Kimuran J, Yoshidall Y, Imanaka T, Takano T. 1994. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem. 269:15274-15279.
  18. Jain M, Sawhney H, Aggarwal N. 2004. Auto antibodies against oxidized low density lipoprotein in severe preeclampsia. J Obstet Gynaecol Res. 30:188-192. https://doi.org/10.1111/j.1447-0756.2004.00185.x
  19. Jeon YE, Seo CW, Yu ES, Lee CJ, Park S-G, Jang Y-J. 2007. Characterization of human monoclonal autoantibody Fab fragments against oxidized LDL. Mol Immunol. 44:827-836. https://doi.org/10.1016/j.molimm.2006.04.005
  20. Kakutani M, Masaki T, Sawamura T. 2000. A plateletendothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1. Proc Natl Acad Sci USA. 97:360-364. https://doi.org/10.1073/pnas.97.1.360
  21. Kraus LM, Kraus AP Jr. 2001. Carbamoylation of amino acids and proteins in uremia. Kidney Int. 78:S102-S107.
  22. Lewis MJ, Malik TH, Ehrenstein MR, Boyle JJ, Botto M, Haskard DO. 2009. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptordeficient mice. Circulation. 120:417-426. https://doi.org/10.1161/CIRCULATIONAHA.109.868158
  23. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S. 2002. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscl Thromb Vascul Biol. 22:1649-1654. https://doi.org/10.1161/01.ATV.0000033829.14012.18
  24. Ok E, Basnakian AG, Apostolov OE, Barri YM, Shah SV. 2005. Carbamylated low-density lipoprotein induces death of endothelial cells: A link to atherosclerosis in patients with kidney disease. Kidney Int. 68:173-178 https://doi.org/10.1111/j.1523-1755.2005.00391.x
  25. Osto E, Kouroedov A, Mocharla P, Akhmedov A, Besler C, Rohrer L, von Eckardstein A, Iliceto S, Volpe M, Lu¨ scher TF, Cosentino F. 2008. Inhibition of protein kinase C prevents foam cell formation by reducing scavenger receptor A expression in human macrophage. Circulation. 118:2174-2182. https://doi.org/10.1161/CIRCULATIONAHA.108.789537
  26. Palinski W, Ord V, Plump AS, Breslow JL, Steinberg D, Witztum JL. 1994. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis: demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb. 14:605-616. https://doi.org/10.1161/01.ATV.14.4.605
  27. PalinskiW, Horkko S, Miller E, Steinbrecher UP, Powell HC, Curtiss LK, Witztum JL. 1996. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest. 98:800-814. https://doi.org/10.1172/JCI118853
  28. Shaw PX, Horkko S, Chang MK, Curtiss LK, Palinski W, Silverman GJ,Witztum JL. 2000. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest. 105:1731-1740. https://doi.org/10.1172/JCI8472
  29. Shaw PX, Horkko S, Tsimikas S, Chang MK, Palinski W, Silverman GJ, Chen PP, Witztum JL. 2001. Humanderived antioxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to aAtherosclerotic lesions in vivo. Arterioscler Thromb Vasc Biol. 21:1333-1339. https://doi.org/10.1161/hq0801.093587
  30. Schiopu A, Bengtsson J, Soderberg I, Janciauskiene S, Lindgren S, Ares MPS, Shah PK, Carlsson R, Nilsson J, Fredrikson GN. 2004. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation. 110(14):2047-2052. https://doi.org/10.1161/01.CIR.0000143162.56057.B5
  31. Sherer Y, Tenenbaum A, Praprotnik S, Shemesh J, Blank M, Fisman EZ, Harats D, George J, Levy Y, Peter JB, Motro M, Shoenfeld Y. 2001. Coronary artery disease but not coronary calcification is associated with elevated levels of cardiolipin, beta-2-glycoprotein-I, and oxidized LDL antibodies. Cardiology. 95:20-24. https://doi.org/10.1159/000047338
  32. Torzewski M, Shaw PX, Han KR, Shortal B, Lackner KJ, Witztum JL, Palinski W, Tsimikas S. 2004. Reduced in vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vascul Biol. 24:2307-2312. https://doi.org/10.1161/01.ATV.0000149378.98458.fe
  33. Tsimikas S, Bergmark C, Beyer RW, Patel R, Pattison J, Miller E, Juliano J, Witztum JL. 2003. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am College Cardiol. 41:360-370.
  34. Tulppala M, Ailus K, Palosuo T, Ylikorkala O. 1995. Antibodies to oxidized low-density lipoprotein and to cardiolipin in nonpregnant and pregnant women with habitual abortion. Fertil Steril. 64:947-950. https://doi.org/10.1016/S0015-0282(16)57907-2
  35. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Horkko S, Barnard J, Reynolds WF, Topol EJ, DiDonato JA, Hazen SL. 2007. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nature Med. 13:1176-1184. https://doi.org/10.1038/nm1637