DOI QR코드

DOI QR Code

A Study on Effects of Temperature for Physical Properties Change of rocks

암석의 물리적 특성 변화에 대한 온도의 영향

  • Kim, Jae-Hwan (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Lee, Myeong-Seong (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Lee, Mi-Hye (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Lee, Jae-Man (Conservation Science Division, National Research Institute of Cultural Heritage) ;
  • Park, Sung-Mi (Conservation Science Division, National Research Institute of Cultural Heritage)
  • 김재환 (국립문화재연구소 보존과학연구실) ;
  • 이명성 (국립문화재연구소 보존과학연구실) ;
  • 이미혜 (국립문화재연구소 보존과학연구실) ;
  • 이재만 (국립문화재연구소 보존과학연구실) ;
  • 박성미 (국립문화재연구소 보존과학연구실)
  • Received : 2011.05.12
  • Accepted : 2011.07.24
  • Published : 2011.09.30

Abstract

Samples (two granites, marble, sandstone) were heated in an electric furnace at temperature $400^{\circ}C$ and $600^{\circ}C$ in order to investigate the change of physical properties of rocks depending on the heating temperature. Changes of Color and physical properties such as specify gravity, porosity, absorption, p-wave velocity are visible while mineralogical changes by using polarizing microscope are not pronounced. In addition, porosity and absorption increased while specific gravity and p-wave velocity decreased at a more higher temperature ($600^{\circ}C$). Although the open porosity does not indicate total porosity of the rock. but p-wave velocity can be used to evaluate the degree of damage Therefore, porosity and p-wave velocity should be compared in order to investigate the change of physical properties of rocks depending on the heating temperature.

암석의 물리적 특성 변화에 대해 온도의 영향을 연구하기 위해 2종의 화강암류와 대리암, 사암을 전기로에서 $400^{\circ}C$$600^{\circ}C$로 가열하였다. 모든 시료에서 가열 후 물리적 특성(비중, 공극률, 흡수율, 초음파속도)과 색상 변화는 보이나, 편광현미경을 이용한 광물학적 변화는 뚜렷하지 않다. 특히 물리적 특성 변화에서 공극률과 흡수율은 증가하고, 비중과 초음파 속도는 감소하는 경향을 보이며, 온도가 증가할수록 변화폭은 크게 나타난다. 여기서 측정한 공극률은 암석의 전체 공극률을 반영하지 못하고 있으나 온도에 의한 암석의 표면 상태 변화를 반영한다 반면 초음파 속도는 암석의 전체적인 손상 정도를 파악하는데 유용하다. 그러므로 온도에 의한 암석의 물리적 특성 변화를 설명하기 위해 공극률과 초음파 속도는 상호 비교해야 한다.

Keywords

References

  1. 김영화, 장보안, 1992, 화강암의 풍화현상에 수반되는 물성 변화의 특성, The journal of Engineering, 2(1), 36-46p.
  2. 이형원, 이정인, 1996, 암석의 강도 및 변형거동의 온도의존성에 관한 연구, 한국암반공학회, 6, 101-121p.
  3. 이형원, 이정인, 1995, 고온하에서 암석의 열충격, 열팽창 및 열파괴에 관한 연구, 한국암반공학회, 5, 22-40p.
  4. 윤용균, 2004, 보령사암과 여산대리암의 물리적특성에 대한 온도의 영향, 대한 화약발파공학회, 22(4), 17-22p.
  5. Chaki, S. and Takarli, M., 2008, Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions, Constr Build Mater, 22, 1456-1461p. https://doi.org/10.1016/j.conbuildmat.2007.04.002
  6. David, C. and Menendez, B., 1999, Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite, Int J Rock Mech Min Sci, 36, 433-448p. https://doi.org/10.1016/S0148-9062(99)00010-8
  7. Darot, M. and Reuschle, T., 2000, Acoustic wave velocity and permeability evolution during pressure cycles on a thermally cracked granite, Int J Rock Mech Min Sci, 37, 1019-1026p. https://doi.org/10.1016/S1365-1609(00)00034-4
  8. Ferrero, A.M. and Maarini, P., 2001, Experimental studies on the mechanical behaviour of two thermal cracked marbles, Rock Mech Rock Eng, 34, 57-66p. https://doi.org/10.1007/s006030170026
  9. Fredrich, J.T. and Wong, T., 1986, Micromechanics of thermally induced cracking in three crustal rocks, J Geophys Res, 91, 12743-12746p. https://doi.org/10.1029/JB091iB12p12743
  10. Geraud, Y., Mazerolle, F. and Raynaud, S., 1992, Comparison between connected and overall porosity of thermal stressed granites, J Struct Geol, 14(8/9), 981-990p. https://doi.org/10.1016/0191-8141(92)90029-V
  11. Glover, P.W.J. and Baud, P. et. al., 1995, $\alpha/\beta$ Phase transition in quartz monitored using acoustic emissions, Geophys J Int, 120, 775-782p. https://doi.org/10.1111/j.1365-246X.1995.tb01852.x
  12. Yavuz, H., Demirdag, S. and Caran, S., 2010, Thermal effect on the physical properties of carbonate rocks, International Journal of Rock Mechanics & Mining Sciences, 47, 94-103p. https://doi.org/10.1016/j.ijrmms.2009.09.014
  13. Jason, D.P. and Carlson, S.R. et. al., 1993, Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet Granite, J Geophys Res, 98(B12), 22231-22243p. https://doi.org/10.1029/93JB01816
  14. Lion, M., Skoczylas, F. and Ledesert, B., 2005, Effects of heating on the hydraulic and poroelastic properties of bourgogne limestone, Int J Rock Mech Min Sci, 42, 508-520p. https://doi.org/10.1016/j.ijrmms.2005.01.005
  15. Chaki, S., Takarli, M. and Agbodjan, W.P., 2008, Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22, 1456-1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002

Cited by

  1. Experimental Application of Consolidants Using Artificially Weathered Stones(II): Focusing on Accelerated Weathering Test vol.29, pp.3, 2013, https://doi.org/10.12654/JCS.2013.29.3.06
  2. Variation of Rock Properties in Acidic Solution and Loading Condition vol.26, pp.3, 2016, https://doi.org/10.7474/TUS.2016.26.3.154
  3. Correlation and correction factor between direct and indirect methods for the ultrasonic measurement of stone samples vol.76, pp.14, 2017, https://doi.org/10.1007/s12665-017-6810-7