Preparation of Poly(vinyl acetate)/Silver Hollow Microspheres via Suspension Polymerization

현탁중합에 의한 폴리(비닐 아세테이트)/은 중공 미세입자의 제조

  • Yeum, Jeong-Hyun (Department of Natural Fiber Science, Kyungpook National University)
  • Received : 2011.01.18
  • Accepted : 2011.05.11
  • Published : 2011.09.25

Abstract

Effects of silver nanoparticles on the polymerization rate and morphology of poly(vinyl acetate) (PVAc)/silver microspheres prepared by suspension polymerization of VAc were investigated. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and atomic absorption spectrometry were used to characterize the morphology and properties of the PVAc/silver microspheres. Due to the change of hydrophilicity of silver nanoparticles, appearance of the microspheres having golf ball-like convave surfaces was observed. Under controlled concentration of surfactant, PVAc/silver microspheres with various hollow structures were synthesized. In the case of silver nanoparticles modified by surfactant, the polymerization rate increased slightly. PVAc/silver microspheres with a conversion up to 80% were prepared via suspension polymerization.

현탁중합에 의한 폴리(비닐 아세테이트)((poly(vinyl acetate)(PVAc))/은 미세입자 제조시 사용된 은 나노입자가 중합속도 및 PVAc 미세입자의 형태에 미치는 영향을 고찰하였다. 주사전자현미경, 투과전자현미경, X선 회절, 원자흡수분광분석법을 이용하여 제조된 미세입자의 형태와 특성을 분석한 결과, 사용된 은 나노입자 표면의 친수성 정도와 계면활성제의 농도에 따라 미세입자의 표면이 골프공 표면처럼 오목해지거나 다양한 형태의 중공 구조를 가지는 PVAc/은 미세입자가 제조됨이 관찰되었다. 계면활성제로 개질된 은 나노입자를 이용하여 중합한 경우에 중합속도가 약간 증가하였으며, 80% 이상의 전환율을 가지는 PVAc/은 미세입자를 제조할 수 있었다.

Keywords

References

  1. H. Tobita, Polymer, 35, 3032 (1994). https://doi.org/10.1016/0032-3861(94)90416-2
  2. B. Gao, J. Lu, R. Zhuang, and G. Zhang, J. Appl. Polym. Sci., 114, 3487 (2009). https://doi.org/10.1002/app.30892
  3. H. M. Jung, E. M. Lee, B. C. Ji, Y. Deng, J. D. Yun, and J. H. Yeum, Colloid Polym. Sci., 285, 705 (2007). https://doi.org/10.1007/s00396-006-1623-3
  4. R. K. Hailstone, J. Phys. Chem., 99, 4414 (1995). https://doi.org/10.1021/j100013a009
  5. T. Sun and K. Seff, Chem. Rev., 94, 857 (1994). https://doi.org/10.1021/cr00028a001
  6. H. Tada, K. Teranishi, Y. Inubushi, and S. Ito, Langmuir, 16, 3304 (2000). https://doi.org/10.1021/la991315z
  7. U. Nickel, A. zu Castell, K. Poppl, and S. Schneider, Langmuir, 16, 9087 (2000). https://doi.org/10.1021/la000536y
  8. T. Pal, J. Chem. Educ., 71, 679 (1994). https://doi.org/10.1021/ed071p679
  9. Y. Iwata, Zeolite News Lett., 13, 8 (1996).
  10. A. Oya, J. Antibac. Antifungal. Agents(Jpn), 24, 429 (1996).
  11. J. S. Lim, E. H. Son, S. J. Hwang, and S. S. Kim, Polymer(Korea), 29, 350 (2005).
  12. G. M. Yang and D. J. Chung, Polymer(Korea), 27, 493 (2003).
  13. P. J. Dowding and B. Vincent, Colloids and Surfaces, 161, 259 (2000). https://doi.org/10.1016/S0927-7757(99)00375-1
  14. J. H. Yeum, S. Qunhui, and Y. Deng, Macromol. Mater. Eng., 290, 78 (2005). https://doi.org/10.1002/mame.200400313
  15. J. H. Yeum and Y. Deng, Colloid Polym. Sci., 283, 1172 (2005). https://doi.org/10.1007/s00396-005-1300-y
  16. J. H. Yeum, H. D. Ghim, and Y. Deng, Fiber Polym., 6, 277 (2005). https://doi.org/10.1007/BF02875662
  17. E. M. Lee, H. W. Lee, J. H. Park, Y. A. Han, B. C. Ji, W. Oh, Y. Deng, and J. H. Yeum, Colloid Polym. Sci., 286, 1379 (2008). https://doi.org/10.1007/s00396-008-1907-x
  18. B. C. Ji, E. M. Lee, and J. H. Yeum, Polymer(Korea), 34, 341 (2010).
  19. C. Dahmen, A. N. Sprafke, H. Dieker, M. Wuttig, and G. von Plessen, Appl. Phys. Lett., 88, 011923 (2006). https://doi.org/10.1063/1.2163268