DOI QR코드

DOI QR Code

High-efficiency and Rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds

벼 발아초기 종자를 이용한 고효율 단기형질전환 방법

  • Lee, Hye-Jung (Department of Crop Science, Chungbuk National University) ;
  • Abdula, Sailila E. (Department of Crop Science, Chungbuk National University) ;
  • Jee, Moo-Geun (Department of Crop Science, Chungbuk National University) ;
  • Jang, Dae-Won (Department of Crop Science, Chungbuk National University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University)
  • 이혜정 (농업생명환경대학 식물자원학과) ;
  • ;
  • 지무근 (농업생명환경대학 식물자원학과) ;
  • 장대원 (농업생명환경대학 식물자원학과) ;
  • 조용구 (농업생명환경대학 식물자원학과)
  • Received : 2011.11.01
  • Accepted : 2011.11.14
  • Published : 2011.12.31

Abstract

Rice is the most important crop as a model plant for functional genomics of monocotyledons. Rice is usually transformed using Agrobacterium tumefaciens. However, the transformation efficiency using previous method is still low. In this study, we established a new method by modifying the general Agrobacterium protocol especially in the inoculation and co-cultivation step. We directly inoculated Agrobacterium containing a CIPK15 gene under the control of CaMV 35S promoter and NOS terminator in the pCAM1300 vector into the pre-soaked seeds in N6D media for 24 hours. After 7 days of culture at $25^{\circ}C$, calli were formed on seeds cultured on the co-cultivation medium containing an antioxidant compound (1 mM dithiothreitol) and of Agrobacterium growth-inhibiting agent (3 mg/L silver nitrate). We obtained 35 and 22 transgenic plants in rice cultivars, Gopumbyeo and Ilpumbyeo, with increase of transformation efficiency by 30.4% and 22.6%, respectively compared to the general transformation method. The new method in this study would lead to reduction of substantial labor and time to generate transgenic plants.

벼의 염기서열 분석이 완료됨에 따라 유전자의 세포내 기능을 밝히기 위한 기능유전체 연구가 활발히 진행되고 있다. 이를 위해 효율적으로 아그로박테리움을 이용해 원하는 유전자를 식물체 내로 형질전환을 하기 위한 노력은 지금도 계속 진행되고 있다. 본 실험에서는 캘러스를 유기한 후 아그로박테리움을 이용해 접종하는 기존의 방법과 달리, 성숙 종자를 소독한 후 2,4-D가 포함된 액체배지에 24시간 침종하여 배 부분이 발아하기 시작하는 종자를 이용해 바로 아그로박테리움을 접종하여 체세포변이의 발생을 최소화하고 유전자를 포함하고 있는 아그로박테리움이 식물 조직내로 침투할 수 있는 효율을 증가시키며, 그 후 캘러스를 유기하여 재분화 시킴으로써 형질전환 식물체를 얻는 방법을 새롭게 수립하였다. 배양과정 중 공동배양 배지에 아그로박테리움 성장억제물질인 silver nitrate와 항산화 물질인 DTT를 첨가하여 공동 배양 기간을 7일 이상으로 늘림으로써 벼 형질전환효율을 증가시킬 수 있었고, PCR 분석을 통해 원하는 목표 유전자가 형질전환체에 안정적으로 도입이 되는 것도 확인할 수 있었다. 또한, 이 방법은 형질전환 효율이 낮은 일품벼와 같은 품종에도 적용할 수 있을 것으로 판단된다. 이러한 결과를 종합해 볼 때, 본 실험을 통해 얻어진 새로운 공동배양 방법은 우수한 농업적 형질을 가진 벼 육종 소재 및 품종 개발시 효율적으로 이용할 수 있을 것으로 생각된다.

Keywords

References

  1. Charles LA, Jyoti RR (2001) Agrobacterium-mediated plant transformation method. WO 2001/009302/A2
  2. Cho YG, Kang HJ, Lee JS, Lee YT, Lim SJ, Gauch H, Eun MY, McCouch SR (2007) Identification of quantitative trait loci in rice for yield, yield components, and agronomic traits across years and locations. Crop Sci 47:2403-2417 https://doi.org/10.2135/cropsci2006.08.0509
  3. Cho YG, HJ Kang, YT Lee, SK Jong, MY Eun, SR McCouch (2010) Identification of quantitative trait loci for physical and chemical properties of rice grain. Plant Biot Rep 4:61-73 https://doi.org/10.1007/s11816-009-0120-9
  4. Choi PS, Komatsuda T, Kim MH, Choi KM, Choi DW, Liu JR (2002) Screening of soybean recombinant inbred lines for high competence somatic embryogenesis. Kor J Plant Biotechnol 29:135-138 https://doi.org/10.5010/JPB.2002.29.2.135
  5. Christou P, Ford T, Kofron M (1991) Production of transgenic Rice (Oryza Sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nature Biotechnol 9:957-962 https://doi.org/10.1038/nbt1091-957
  6. Chu CC, Wang CS, Sun CC, Hsu C, Yin KC, Chu CY (1975) Establishment of anefficient medium for anther culture of rice through comparative experiments on thenitrogen sources. Sci Sinica 18:659-668
  7. Dey M, Jiang H, Wu R (2002) Antinecrotic substances improved regeneration frequency of transgenic rice. Rice Genetics Newsletter 19:82-84
  8. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  9. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Nat Acad Sci USA 92:8149-8153 https://doi.org/10.1073/pnas.92.18.8149
  10. Kim Y-H, Park H-M, Choi M-S, Yun H-T, Choi I-S, Shin D-B, Kim C-K, Lee J-Y (2009) The effects of co-cultivation medium and culture conditions on rice transformation efficiency. Kor J Breed Sci 41:252-260
  11. Komatsuda T (1992) Research on somatic embryogenesis and plant regeneration in soybean. Natl Inst Agrobiol Resources (Japan) Ann Rep 7:1-78
  12. Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants tranformed via microprojectile bombardment. Plant Mol Biol 52:421-432 https://doi.org/10.1023/A:1023968920830
  13. Nishimura A, Aichi I, Matsuoka M (2006) A protocol for Agrobacterium-mediated transformation in rice. Nature Protocols 1:2796-2802 https://doi.org/10.1038/nprot.2006.469
  14. Rachmawati D, Anzai H (2006) Studies on callus induction, plant regeneration and transformation of Javanica rice cultivars. Plant Biotechnol 23:521-524 https://doi.org/10.5511/plantbiotechnology.23.521
  15. Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep 15:727-730 https://doi.org/10.1007/BF00232216
  16. Toki S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15:16-21 https://doi.org/10.1007/BF02772109
  17. Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka SB, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969-976 https://doi.org/10.1111/j.1365-313X.2006.02836.x

Cited by

  1. Molecular characterization of the UDP-glucose 4-epimerase (BrUGE) gene family in response to biotic and abiotic stress in Chinese cabbage (Brassica rapa) vol.9, pp.6, 2015, https://doi.org/10.1007/s11816-015-0370-7
  2. Rapid Agrobacterium-mediated genetic rice transformation method using liquid media vol.40, pp.1, 2013, https://doi.org/10.5010/JPB.2013.40.1.037
  3. Overexpression of BrCIPK1 Gene Enhances Abiotic Stress Tolerance by Increasing Proline Biosynthesis in Rice vol.34, pp.2, 2016, https://doi.org/10.1007/s11105-015-0939-x
  4. BrUGE1 transgenic rice showed improved growth performance with enhanced drought tolerance vol.66, pp.2, 2016, https://doi.org/10.1270/jsbbs.66.226
  5. A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system vol.44, pp.1, 2017, https://doi.org/10.5010/JPB.2017.44.1.089
  6. Development of high tryptophan GM rice and its transcriptome analysis vol.42, pp.3, 2015, https://doi.org/10.5010/JPB.2015.42.3.186
  7. Overexpression ofNtROS2agene encoding cytosine DNA demethylation enhances drought tolerance in transgenic rice vol.43, pp.3, 2016, https://doi.org/10.5010/JPB.2016.43.3.376
  8. Isolation and functional characterization of BrUGT gene encoding a UDP-glycosyltransferase from Chinese cabbage (Brassica rapa) vol.39, pp.3, 2012, https://doi.org/10.5010/JPB.2012.39.3.212
  9. Functional properties of an alternative, tissue-specific promoter for rice NADPH-dependent dihydroflavonol reductase vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0183722
  10. Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress vol.32, pp.10, 2013, https://doi.org/10.1007/s00299-013-1464-8
  11. Application of ZFN for Site Directed Mutagenesis of Rice SSIVa Gene vol.23, pp.1, 2018, https://doi.org/10.1007/s12257-017-0420-9