DOI QR코드

DOI QR Code

알칼리처리와 초음파처리를 이용한 슬러지 가용화 연구

A Study of Sewage Sludge Solubilization by Alkali and Ultrasonic pretreatment

  • 김재형 (서울과학기술대학교 에너지환경대학원) ;
  • 양홍규 (서울과학기술대학교 에너지환경대학원) ;
  • 이준철 (서울과학기술대학교 에너지환경대학원) ;
  • 박홍선 (서울과학기술대학교 에너지환경대학원) ;
  • 최광근 ((주)지앤지인텍) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원)
  • Kim, Jae-Hyung (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Yang, Hong-Gyu (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Lee, Joon-Cheol (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Park, Hong-Sun (Graduate School of energy and Environment, Seoul National University of Technology & Science) ;
  • Choi, Gwang-Geun (G&G InTech, Gyeonggi R&DB Center) ;
  • Pak, Dae-Won (Graduate School of energy and Environment, Seoul National University of Technology & Science)
  • 투고 : 2011.03.14
  • 심사 : 2011.06.13
  • 발행 : 2011.06.30

초록

본 연구는 하수슬러지에 알칼리처리와 초음파처리를 적용하여 최적의 가용화 조건을 도출하고자 각각의 단일처리, 병합처리로 가용화율을 확인하였다. 단일처리 중 알칼리처리는 4종의 알칼리시약을 각각 적용하여 전처리한 결과, NaOH를 이용한 방법이 27.6%로 가장 높은 가용화율을 확인할 수 있었으며, 주입농도가 높아지더라도 가용화에 미치는 영향에는 한계가 있음을 확인하였다. 초음파처리는 140 W/L의 조사밀도에서 가용화율이 가장 높았으며(33~39%), 조사주기의 증대는 가용화율에 큰 영향을 미치지 않는 것으로 확인되었다. 알칼리 처리와 초음파처리를 혼재한 병합처리 시 알칼리처리 후 초음파처리를 적용한 방법이 $70.4{\pm}9.4%$의 가용화율로 초음파처리 후 알칼리처리 방법에 비해 약 22% 높은 결과를 나타내었다. 각 조건에서의 SCOD 증가속도는 병합처리(알칼리처리 후 초음파처리)에서 0.076 $min^{-1}$으로 가장 높은 결과를 나타내었다.

In this study, individual(alkaline, ultrasonic) and combined(alkaline+ultrasonic) pretreatment effect on sewage sludge solubilization was investigated. COD solubilization rates increased with the dose of NaOH added: solubilization reached 27.6%. Additional alkaline agents did not increase solubilization further. Ultrasonic pretreatment achieved 33~39% solubilization when 140 W/L amplitude. In(alkaline(pre-treatment)+ultrasonic (after-treatment)) treatment, solubilization increased as the combined intensity in creased($70.4{\pm}9.4%$). SCOD rising rate(0.076) was achieved.

키워드

참고문헌

  1. 환경부, 2009 하수도통계, 2010.
  2. 환경부, 런던협약 '96 의정서 발효에 따른 하수슬러지관리 종합대책, 2007.
  3. F. Jorand; P. Guicherd; V. Urbain; J. Manem; and J. C. Block. Hydrophobicity of activated-sludge flocs and laboratory-grown bacteria, Water Sci. Technol., 1994, 30, 211-218.
  4. B. M. Wilen; B. Jin; P. Lant. The influence of key chemical constituents in activated sludge on surface and floculating properties, Water Res., 2003, 37, 2127-2139. https://doi.org/10.1016/S0043-1354(02)00629-2
  5. S. Comte; G. Guibaud; M. Baudu. Effect of extraction method on EPS from activated sludge: An HPSEC investigation, J. Hazard. Mater., 2007, 140, 129-137. https://doi.org/10.1016/j.jhazmat.2006.06.058
  6. B. Frohlund; T. Griebe; P. H. Nielsen. Enzyme activity in activated-sludge floc matrix, Appl. Microbiol. Biotechnol. 1995, 43, 755-761. https://doi.org/10.1007/BF00164784
  7. Y. Y. Li; T. Noike, Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Water Sci. Technol., 1992, 26, 857-866.
  8. X. Q. Zhang; P. L. Bishop, Biodegradability of biofilm extracellular polymric substances, Chemosphere, 2003, 50, 63-69. https://doi.org/10.1016/S0045-6535(02)00319-3
  9. Z. W. Wang; Y. Liu; J. H. Tay. Biodegradability of extracellular polymeric substances produced by aerobic granules, Appl. Microbiol. Biotechnol., 2007, 74, 462-466. https://doi.org/10.1007/s00253-006-0686-x
  10. J. Kim; C. Park; T. H. Kim; M. Lee; S. Kim; S. W. Kim; J. Lee. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, J. Biosci. Bioeng., 2003, 95, 271-275. https://doi.org/10.1016/S1389-1723(03)80028-2
  11. A. Valo; H. Carrere; J. P. Delgenes. Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion, J. Chem. Technol. Biotechnol., 2004, 79, 1197-1203. https://doi.org/10.1002/jctb.1106
  12. D. C. Stuckey; P. L. McCarty. Thermochemical pretreatment of nitrogenous materials to increase methane yield, Biotechnol. Bioeng. Symp., 1978, 8, 219-233.
  13. C. P. Chu; D. J. Lee; B. V. Chang; C. S. You; J. H. Tay. Weak ultrasonic pretreatment on anaerobic digestion of flocculated activated biosolids, Water Res., 2002, 36, 2681-2688. https://doi.org/10.1016/S0043-1354(01)00515-2
  14. A. Tiehm; K. Nickel; U. Neis. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge, Water Sci. Technol., 1997, 36, 121-128. https://doi.org/10.1016/S0273-1223(97)00676-8
  15. M. R. Salsabil; A. Prorot; M. Casellas; C. Dagot. Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility, Chem. Eng. J., 2009, 148, 327-335. https://doi.org/10.1016/j.cej.2008.09.003
  16. I. Dogan; F. D. Sanin. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method, Water Res., 2009, 43, 2139-2148. https://doi.org/10.1016/j.watres.2009.02.023
  17. APHA, AWWA and WEF : Standard methods for the examination of water and wastewater, 20th ed. Baltimore, American Public Health Association 2, 1998, 57-59.
  18. V. Penaud; J.P. Delgenes; R. Moletta. Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability, Enzyme Microb. Tech., 1999, 25, 258-263. https://doi.org/10.1016/S0141-0229(99)00037-X
  19. A. Tiehm; K. Nickel; M. Zellhorn; U. Neis. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization, Wat. Res., 2001, 35, 2003-2009. https://doi.org/10.1016/S0043-1354(00)00468-1
  20. 권재현; 김봉준; 김민규; 염익태; 김형수. 전처리 방법에 따른 하수슬러지 가용화 비교연구, 상하수도학회지, 2003, 17, 567-573.