GENERALIZED QUADRATIC MAPPINGS IN $2 d$ VARIABLES

Yeol Je Cho*, Sang Han Lee and Choonkil Park

Abstract. Let X, Y be vector spaces. It is shown that if an even mapping $f: X \rightarrow Y$ satisfies $f(0)=0$, and

$$
\begin{aligned}
& 2\left(2 d-2 C_{d-1}-2 d-2 C_{d}\right) f\left(\sum_{j=1}^{2 d} x_{j}\right)+\sum_{\iota(j)=0,1, \sum_{j=1}^{2 d} \iota(j)=d} f\left(\sum_{j=1}^{2 d}(-1)^{\iota(j)} x_{j}\right) \\
& =2\left(2 d-1 C_{d}+2 d-2 C_{d-1}-2 d-2 C_{d}\right) \sum_{j=1}^{2 d} f\left(x_{j}\right)
\end{aligned}
$$

for all $x_{1}, \cdots, x_{2 d} \in X$, then the even mapping $f: X \rightarrow Y$ is quadratic.

Furthermore, we prove the Hyers-Ulam stability of the above functional equation in Banach spaces.

1. Introduction and preliminaries

In 1940, S.M. Ulam [14] raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping?

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Hyers [3] showed that if $\epsilon>0$ and $f: X \rightarrow Y$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in X$, then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \epsilon
$$

[^0]for all $x \in X$.
Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that
$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$
for all $x, y \in X$. Th.M. Rassias [6] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that
$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$
for all $x \in X$. Găvruta [4] generalized the Rassias' result.
A square norm on an inner product space satisfies the important parallelogram equality
$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} .
$$

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. The Hyers-Ulam stability problem of the quadratic functional equation was proved by Skof [13] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In [2], Czerwik proved the Hyers-Ulam stability of the quadratic functional equation. Several functional equations have been investigated in [5]-[12].

In this paper, we solve the functional equation

$$
\begin{align*}
& 2\left(2 d-2 C_{d-1}-{ }_{2 d-2} C_{d}\right) f\left(\sum_{j=1}^{2 d} x_{j}\right)+\sum_{\iota(j)=0,1, \sum_{j=1}^{2 d} \iota(j)=d} f\left(\sum_{j=1}^{2 d}(-1)^{\iota(j)} x_{j}\right) \\
& =2\left({ }_{2 d-1} C_{d}+{ }_{2 d-2} C_{d-1}-{ }_{2 d-2} C_{d}\right) \sum_{j=1}^{2 d} f\left(x_{j}\right), \tag{1.1}
\end{align*}
$$

and prove the Hyers-Ulam stability of the functional equation (1.1) in Banach spaces.

2. Stability of generalized quadratic mappings in $2 d$ variables

Throughout this section, assume that X and Y are vector spaces.
Lemma 2.1. If an even mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and (1.1), then the mapping $f: X \rightarrow Y$ is quadratic.

Proof. Letting $x_{1}=x, x_{2}=y$ and $x_{3}=\cdots=x_{2 d}=0$ in (1.1), we get

$$
\begin{gathered}
2\left(2 d-2 C_{d-1}-{ }_{2 d-2} C_{d}\right) f(x+y)+2_{2 d-2} C_{d} f(x+y)+2_{2 d-2} C_{d-1} f(x-y) \\
=2\left(2 d-1 C_{d}+2 d-2 C_{d-1}-{ }_{2 d-2} C_{d}\right)(f(x)+f(y))
\end{gathered}
$$

for all $x, y \in X$. So
${ }_{2 d-2} C_{d-1}(f(x+y)+f(x-y))=\left({ }_{2 d-1} C_{d}+{ }_{2 d-2} C_{d-1}-{ }_{2 d-2} C_{d}\right)(f(x)+f(y))$
for all $x, y \in X$. Since ${ }_{2 d-1} C_{d}+{ }_{2 d-2} C_{d-1}-{ }_{2 d-2} C_{d}=2_{2 d-2} C_{d-1}$,

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

for all $x, y \in X$. Thus the even mapping $f: X \rightarrow Y$ is quadratic.
From now on, assume that X is a normed vector space with norm $\|\cdot\|$ and that Y is a Banach space with norm $\|\cdot\|$.

For a given mapping $f: X \rightarrow Y$, we define

$$
\begin{aligned}
& D f\left(x_{1}, \cdots, x_{2 d}\right):=2\left({ }_{2 d-2} C_{d-1}-{ }_{2 d-2} C_{d}\right) f\left(\sum_{j=1}^{2 d} x_{j}\right) \\
& +\sum_{\iota(j)=0,1, \sum_{j=1}^{2 d} \iota(j)=d} f\left(\sum_{j=1}^{2 d}(-1)^{\iota(j)} x_{j}\right) \\
& -2\left({ }_{2 d-1} C_{d}+{ }_{2 d-2} C_{d-1}-{ }_{2 d-2} C_{d}\right) \sum_{j=1}^{2 d} f\left(x_{j}\right)
\end{aligned}
$$

for all $x_{1}, \cdots, x_{2 d} \in X$.
Theorem 2.2. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=$ 0 for which there exists a function $\varphi: X^{2 d} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\widetilde{\varphi}\left(x_{1}, \cdots, x_{2 d}\right): & =\sum_{j=1}^{\infty} 9^{j} \varphi\left(\frac{x_{1}}{3^{j}}, \cdots, \frac{x_{2 d}}{3^{j}}\right)<\infty, \tag{2.1}\\
\left\|D f\left(x_{1}, \cdots, x_{2 d}\right)\right\| & \leq \varphi\left(x_{1}, \cdots, x_{2 d}\right) \tag{2.2}
\end{align*}
$$

for all $x_{1}, \cdots, x_{2 d} \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{18_{2 d-3} C_{d-1}} \widetilde{\varphi}(x, x, x, \underbrace{0, \cdots, 0}_{2 d-3 \text { times }}) \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x_{1}=x_{2}=x_{3}=x$ and $x_{4}=\cdots=x_{2 d}=0$ in (2.2), we get

$$
\begin{aligned}
\| 2\left({ }_{2 d-2} C_{d-1}\right. & \left.-{ }_{2 d-2} C_{d}+{ }_{2 d-3} C_{d}\right) f(3 x) \\
& -6\left({ }_{2 d-1} C_{d}+{ }_{2 d-2} C_{d-1}-{ }_{2 d-2} C_{d}-{ }_{2 d-3} C_{d-1}\right) f(x) \| \\
& \leq \varphi(x, x, x, \underbrace{0, \cdots, 0}_{2 d-3 \text { times }})
\end{aligned}
$$

for all $x \in X$. Since

$$
\begin{aligned}
& { }_{2 d-1} C_{d}+{ }_{2 d-2} C_{d-1}-{ }_{2 d-2} C_{d}-{ }_{2 d-3} C_{d-1}=3\left({ }_{2 d-2} C_{d-1}-{ }_{2 d-2} C_{d}+{ }_{2 d-3} C_{d}\right) \\
& =3_{2 d-3} C_{d-1} \text {, }
\end{aligned}
$$

$$
\begin{align*}
& \left.\| 2_{2 d-3} C_{d-1} f(3 x)-18_{2 d-3} C_{d-1}\right) f(x) \| \tag{2.4}\\
& \quad=\left\|2_{2 d-3} C_{d-1}(f(3 x)-9 f(x))\right\| \\
& \quad \leq \varphi(x, x, x \underbrace{0, \cdots, 0}_{2 d-3 \text { times }})
\end{align*}
$$

for all $x \in X$. So

$$
\left\|f(x)-9 f\left(\frac{x}{3}\right)\right\| \leq \frac{1}{2_{2 d-3} C_{d-1}} \varphi(\frac{x}{3}, \frac{x}{3}, \frac{x}{3}, \underbrace{0, \cdots, 0}_{2 d-3 \text { times }})
$$

for all $x \in X$. Hence

$$
\begin{align*}
& \left\|9^{l} f\left(\frac{x}{3^{l}}\right)-9^{m} f\left(\frac{x}{3^{m}}\right)\right\| \tag{2.5}\\
& \quad \leq \sum_{j=l}^{m-1} \frac{9^{j}}{2_{2 d-3} C_{d-1}} \varphi(\frac{x}{3^{j+1}}, \frac{x}{3^{j+1}}, \frac{x}{3^{j+1}}, \underbrace{0, \cdots, 0}_{2 d-3 \text { times }})
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.1) and (2.5) that the sequence $\left\{9^{n} f\left(\frac{x}{3^{n}}\right)\right\}$ is a Cauchy sequence
for all $x \in X$. Since Y is complete, the sequence $\left\{9^{n} f\left(\frac{x}{3^{n}}\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} 9^{n} f\left(\frac{x}{3^{n}}\right)
$$

for all $x \in X$.
By (2.1) and (2.2),

$$
\begin{aligned}
\left\|D Q\left(x_{1}, \cdots, x_{2 d}\right)\right\| & =\lim _{n \rightarrow \infty} 9^{n}\left\|D f\left(\frac{x_{1}}{3^{n}}, \cdots, \frac{x_{2 d}}{3^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} 9^{n} \varphi\left(\frac{x_{1}}{3^{n}}, \cdots, \frac{x_{2 d}}{3^{n}}\right)=0
\end{aligned}
$$

for all $x_{1}, \cdots, x_{2 d} \in X$. So $D Q\left(x_{1}, \cdots, x_{2 d}\right)=0$. By Lemma 2.1, the mapping $Q: X \rightarrow Y$ is quadratic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.5), we get the inequality (2.3).

Now, let $Q^{\prime}: X \rightarrow Y$ be another quadratic mapping satisfying (2.3). Then we have

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x)\right\| & =9^{n}\left\|Q\left(\frac{x}{3^{n}}\right)-Q^{\prime}\left(\frac{x}{3^{n}}\right)\right\| \\
& \leq 9^{n}\left(\left\|Q\left(\frac{x}{3^{n}}\right)-f\left(\frac{x}{3^{n}}\right)\right\|+\left\|Q^{\prime}\left(\frac{x}{3^{n}}\right)-f\left(\frac{x}{3^{n}}\right)\right\|\right) \\
& \leq \frac{2 \cdot 9^{n}}{18_{2 d-3} C_{d-1}} \widetilde{\varphi}(\frac{x}{3^{n}}, \frac{x}{3^{n}}, \frac{x}{3}, \underbrace{0, \cdots, 0}_{2 d-3 \text { times }}),
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in X$. So we can conclude that $Q(x)=Q^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of Q.

Corollary 2.3. Let $p>2$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\left\|D f\left(x_{1}, \cdots, x_{2 d}\right)\right\| \leq \theta \sum_{j=1}^{2 d}\left\|x_{j}\right\|^{p} \tag{2.6}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{2 d} \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{3 \theta}{2\left(3^{p}-9\right)_{2 d-3} C_{d-1}}\|x\|^{p}
$$

for all $x \in X$.
Proof. Defining $\varphi\left(x_{1}, \cdots, x_{2 d}\right)=\theta \sum_{j=1}^{2 d}\left\|x_{j}\right\|^{p}$ in Theorem 2.2, we get the desired result, as desired.

Theorem 2.4. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=$ 0 for which there exists a function $\varphi: X^{2 d} \rightarrow[0, \infty)$ satisfying (2.2) and

$$
\begin{equation*}
\widetilde{\varphi}\left(x_{1}, \cdots, x_{2 d}\right):=\sum_{j=0}^{\infty} \frac{1}{9^{j}} \varphi\left(3^{j} x_{1}, \cdots, 3^{j} x_{2 d}\right)<\infty \tag{2.7}
\end{equation*}
$$

for all $x_{1}, \cdots, x_{2 d} \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{18_{2 d-3} C_{d-1}} \widetilde{\varphi}(x, x, x, \underbrace{0, \cdots, 0}_{2 d-3 \text { times }}) \tag{2.8}
\end{equation*}
$$

for all $x \in X$.
Proof. It follows from (2.4) that

$$
\left\|f(x)-\frac{1}{9} f(3 x)\right\| \leq \frac{1}{18_{2 d-3} C_{d-1}} \varphi(x, x, x, \underbrace{0, \cdots, 0}_{2 d-3 \text { times }})
$$

for all $x \in X$. Hence

$$
\begin{align*}
\| \frac{1}{9^{l}} f\left(3^{l} x\right) & -\frac{1}{9^{m}} f\left(3^{m} x\right) \| \tag{2.9}\\
& \leq \sum_{j=l}^{m-1} \frac{1}{9^{j} \cdot 18_{2 d-3} C_{d-1}} \varphi(3^{j} x, 3^{j} x, 3^{j} x, \underbrace{0, \cdots, 0}_{2 d-3 \text { times }})
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x \in X$. It follows from (2.7) and (2.9) that the sequence $\left\{\frac{1}{9^{n}} f\left(3^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{9^{n}} f\left(3^{n} x\right)\right\}$ converges. So one can define the mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{1}{9^{n}} f\left(3^{n} x\right)
$$

for all $x \in X$.
By (2.2) and (2.7),

$$
\begin{aligned}
\left\|D Q\left(x_{1}, \cdots, x_{2 d}\right)\right\| & =\lim _{n \rightarrow \infty} \frac{1}{9^{n}}\left\|D f\left(3^{n} x_{1}, \cdots, 3^{n} x_{2 d}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{9^{n}} \varphi\left(3^{n} x_{1}, \cdots, 3^{n} x_{2 d}\right)=0
\end{aligned}
$$

for all $x_{1}, \cdots, x_{2 d} \in X$. So $D Q\left(x_{1}, \cdots, x_{2 d}\right)=0$. By Lemma 2.1, the mapping $Q: X \rightarrow Y$ is quadratic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.9), we get the inequality (2.8).

The rest of the proof is similar to the proof of Theorem 2.2.
Corollary 2.5. Let $p<2$ and θ be positive real numbers, and let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.6). Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq \frac{3 \theta}{2\left(9-3^{p}\right)\left(2 d-3 C_{d-1}\right)}\|x\|^{p}
$$

for all $x \in X$.
Proof. Defining $\varphi\left(x_{1}, \cdots, x_{2 d}\right)=\theta \sum_{j=1}^{2 d}\left\|x_{j}\right\|^{p}$ in Theorem 2.4, we get the desired result, as desired.

References

[1] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[2] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[3] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
[4] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[5] S. Lee, S. Kim and I. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005), 387-394.
[6] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[7] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Stud. Univ. Babeş-Bolyai Math. 43 (1998), 89-124.
[8] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[9] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[10] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[11] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[12] Th.M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[13] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[14] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.

Department of Mathematics Education and the RINS
Gyeongsang National University
Chinju 660-701, Korea
E-mail: yjcho@gnu.ac.kr
Department of Cultural Studies
Chungbuk Provincial University of Science \& Technology
Okcheon 373-807, Korea
E-mail: shlee@ctech.ac.kr
Department of Mathematics
Research Institute for Natural Sciences
Hanyang University
Seoul 133-791, South Korea
E-mail: baak@hanyang.ac.kr

[^0]: Received December 20, 2010. Revised February 25, 2011. Accepted March 10, 2011.

 2000 Mathematics Subject Classification: 39B52.
 Key words and phrases: Hyers-Ulam stability; quadratic mapping; functional equation.
 *Corresponding author.

