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THE PROPERTIES OF ROUGH APPROXIMATIONS

Yong Chan Kim∗ and Jung Mi Ko

Abstract. We investigated the properties of rough approxima-

tions induced by two families of preordered sets and closure sys-
tems. We study the relations among the lower and upper rough
approximations, closure and interior systems, preordered sets.

1. Introduction

Rough set theory was introduced by Pawlak [7] to generalize the
classical set theory. Rough approximations are defined by a parti-
tion of the universe which is corresponding to the equivalence relation
about information. J. Järvinen et.al.[3] define rough approximations
on preorder relations that are not necessarily equivalence relations. An
information consists of (X,A) where X is a set of objects and A is a
set of attributes, a map a : X → P (Aa) where Aa is the value set of
the attribute a. For B ⊂ A,

(x, y) ∈ R ⇔ (∀a ∈ B)(a(x) = a(y)) (Pawlaki’s sense)

(x, y) ∈ R ⇔ (∀a ∈ B)(a(x) ⊂ a(y)) (Järvinen’s sense).

It is an important mathematical tool for data analysis and knowledge
processing [1-8].

In this paper, we investigated the properties of rough approxima-
tions induced by two families of preordered sets and closure systems.
We study the relations among the lower and upper rough approxima-
tions, closure and interior systems, preordered sets.
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Let X be a set. A relation eX ⊂ X × X is called a preorder if it
is reflexive and transitive. We can define a preorder eP (X) ⊂ P (X) ×
P (X) as (A,B) ∈ eP (X) iff A ⊂ B for A,B ∈ P (X). If (X, eX) is a

preordered set and we define a function (x, y) ∈ e−1
X iff (y, x) ∈ eX ,

then (X, e−1
X ) is a preordered set.

2. Preliminaries

Definition 2.1 [6]. (1) A family F = {A ∈ P (X)} is called an
interior system on X if

∪
i∈Γ Ai ∈ F for {Ai | i ∈ Γ} ⊂ F . Let FX

and FY be interior systems on X and Y , respectively. A function
f : (X,FX) → (Y,FY ) is called an I-map if f−1(A) ∈ FX for each
A ∈ FY .

(2) A family G = {A ∈ P (X)} is called a closure system on X if∩
i∈Γ Ai ∈ G for {Ai | i ∈ Γ} ⊂ G. Let GX and GY be closure systems

on X and Y , respectively. A function f : (X,GX) → (Y,GY ) is called
a C-map if f−1(B) ∈ GX for each B ∈ GY . Let F1 (resp. G1) and F2

(resp. G2) be interior (resp. closure) systems on X. F1 (resp. G1) is
coarser than F2 (resp. G2) if F1 ⊂ F2 (resp. G1 ⊂ G2).

Definition 2.2 [4,6]. Let (X, eX) be a preodered set. A set A ∈
P (X) is called an eX-upper set if (x ∈ A & (x, y) ∈ eX) → y ∈ A for
x, y ∈ X.

Theorem 2.3 [4-6]. Let (X, eX) be a preordered set. For A ∈
P (X), we define operations [eX ], ⟨eX⟩ as follows:

[eX ](A) = {x ∈ X | (∀z ∈ X)((x, z) ∈ eX → z ∈ A)},
⟨eX⟩(A) = {x ∈ X | (∃z ∈ X)((x, z) ∈ eX & z ∈ A)}.

Then the following properties hold.
(1)If (eX)x = {z ∈ X | (x, z) ∈ eX} and (eX)−1

x = {z ∈ X | (z, x) ∈
eX}, then (eX)x and ((eX)−1

x )c are eX -upper sets.
(2) A is an eX -upper set iff [eX ](A) = A iff [e−1

X ](Ac) = Ac iff

⟨e−1
X ⟩(A) = A.
(3) If Ai is an eX -upper set for all i ∈ Γ, then

∪
i∈Γ Ai and

∩
i∈Γ Ai

are eX -upper sets.
(4) [eX ](A) =

∪
i{Ai | Ai ⊂ A,Ai : eX − upper set}.

(5) ⟨eX⟩(A) =
∩

i{Ai | A ⊂ Ai, Ai : e
−1
X − upper set}.
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Definition 2.4 [3,6]. In above theorem, [eX ](A) and ⟨eX⟩(A) are
called rough lower approximation and rough upper approximation, re-
spectively, for A ∈ P (X) on a preodered set.

If eX is an equivalence relation, [eX ](A) and ⟨eX⟩(A) are rough
lower approximation and rough upper approximation for A ∈ P (X)
in a Pawlak’s sense [7]. Let (X, eX) and (Y, eY ) be preordered sets.
A function f : (X, eX) → (Y, eY ) is called an order preserving map if
(f(x), f(y)) ∈ eY for all (x, y) ∈ eX .

Theorem 2.5 [6]. Let F = {Bi ∈ P (X) | i ∈ Γ} be an interior
system and F∗ = {Ai ∈ P (X) | Ac

i ∈ F}.
Then; (1) F∗ is a closure system.

(2) There exists a preorder eF on X such that F ⊂ F[eF ] with

(x, y) ∈ eF iff (∀Bi ∈ F)(x ∈ Bi → y ∈ Bi).

(3) There exists a preorder eF∗ on X such that F∗ ⊂ F∗
⟨eF∗ ⟩ with

(x, y) ∈ eF∗ iff (∀Ai ∈ F∗)(y ∈ Ai → x ∈ Ai).

Theorem 2.6 [6]. Let (X, eX) be a preordered set. Define F[eX ],G⟨eX⟩
as follows:

F[eX ] = {A ∈ P (X) | [eX ](A) = A}

G⟨eX⟩ = {A ∈ P (X) | ⟨eX⟩(A) = A}

Then; (1) [eX ](A) ⊂ A and [eX ](A) = [eX ]([eX ](A)), for each A ∈
P (X) with x ∈ [eX ]({y}c) iff (x, y) ̸∈ eX .

(2) A ⊂ ⟨eX⟩(A) and ⟨eX⟩(A) = ⟨eX⟩(⟨eX⟩(A)), for each A ∈ P (X)
with x ∈ ⟨eX⟩({y}) iff (x, y) ∈ eX .

(3) F[eX ] is an interior and closure system with IF[eX ]
= [eX ] where

IF[eX ]
(A) =

∪
{B | B ⊂ A, B ∈ F[eX ]}.

(4) G⟨eX⟩ is an interior and closure system with CG⟨eX⟩ = ⟨eX⟩ where
CG⟨eX⟩(A) =

∩
{B | A ⊂ B, B ∈ G⟨eX⟩}.

(5) eF[eX ]
= eX and eG⟨eX⟩ = eX .
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3. The properties of rough approximations

Theorem 3.1. Let X be a set and {(Xi,Gi)}i∈Γ a family of closure
systems. Let fi : X → Xi be a function. Define

G = {
∩
i∈Γ

f−1
i (Bi) | Bi ∈ Gi}.

Then (1) G is the coarsest closure system on X for which each fi is a
C-map.

(2) G∗ = {
∪

i∈Γ f
−1
i (Ai) | Ai ∈ G∗

i }. is the coarsest interior system
on X for which each fi is an I-map.

(3) A function f : (Y,G′) → (X,G) is a C-map iff fi ◦ f : (Y,G′) →
(Xi,Gi) is a C-map, for each i ∈ Γ.

(4) A function f : (Y,F ′) → (X,G∗) is an I-map iff fi ◦ f : (Y,F) →
(Xi,G∗

i ) is an I-map, for each i ∈ Γ.
(5) (x, y) ∈ eG iff (∀i ∈ Γ)((fi(x), fi(y)) ∈ eGXi

).

(6) (x, y) ∈ eG∗ iff (∀i ∈ Γ)((fi(x), fi(y)) ∈ eG∗
Xi
). In particular,

eG∗ = eG .
(7) G ⊂ G⟨eG⟩ = {

∩
i∈Γ f

−1
i (Bi),

∪
i∈Γ f

−1
i (Bi) | Bi ∈ Gi}.

(8) G∗ ⊂ F[eG∗ ] = {
∩

i∈Γ f
−1
i (Ai),

∪
i∈Γ f

−1
i (Ai) | Ai ∈ G∗

i } = {A |
Ac ∈ G⟨eG⟩}.

Proof. (1) For each k ∈ K with index set K, Ak =
∩

i∈Γ f
−1
i (Bik) ∈

G, then
∩

k∈K Ak =
∩

i∈Γ f
−1
i (

∩
k∈K Bik) ∈ G. Hence G is a closure

system on X. For Bi ∈ Gi, since Xj ∈ Gj because it is the intersection

of empty family, then f−1
i (Bi) = f−1

i (Bi) ∩ (
∩

j∈Γ−{i} f
−1
j (Xj)) ∈ G.

Hence fi is a C-map. Let fi : (X,G′) → (Xi,Gi) be a C-map. For
B =

∩
i∈Γ f

−1
i (Bi) ∈ G with Bi ∈ Gi, then f−1

i (Bi) ∈ G′. Since G′ is a
closure system on X, B ∈ G′, that is, G ⊂ G′. Hence G is the coarsest
closure system on X for which each fi is a C-map.

(3) (⇒) It is trivial because the composition of C-maps is a C-map.
(⇐) For B =

∩
i∈Γ f

−1
i (Bi) ∈ G with Bi ∈ Gi, then f−1(f−1

i (Bi)) ∈
G′. It implies f−1(B) =

∩
i∈Γ f

−1(f−1
i (Bi)) ∈ G′. Thus, f is a C-map.

(2) and (4) are similarly proved as in (1) and (3), respectively.
(5) Suppose there exist x, y ∈ X such that (x, y) ∈ eG , but ̸⊢ (∀i ∈

Γ)((fi(x), fi(y)) ∈ eGXi
);i.e.

̸⊢ (∀i ∈ Γ)(∀Bi ∈ Gi)(fi(y) ∈ Bi → fi(x) ∈ Bi).
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Then there exists i0 ∈ Γ such that (x, y) ∈ eG ,

̸⊢ (∀B ∈ Gi0)(fi0(y) ∈ B → fi0(x) ∈ B).

Then there exists Bi0 ∈ Gi0 such that (x, y) ∈ eG ,

fi0(y) ∈ Bi0 → fi0(x) ̸∈ Bi0 .

Put B = f−1
i0

(Bi0) ∩ (
∩

i ̸=i0
f−1
i (Xi)). Then

⊢ (x, y) ∈ eG →
(
y ∈ B → x ∈ B

)
.

Since ⊢ (x, y) ∈ eG , by Modus Ponens, ⊢ (fi0(y) ∈ Bi0 → fi0(x) ∈ Bi0).
It is a contradiction. Hence, if (x, y) ∈ eG , then (∀i ∈ Γ)((fi(x), fi(y)) ∈
eGXi

).
Suppose there exist x, y ∈ X such that

(x, y) ̸∈ eG ,⊢ (∀i ∈ Γ)((fi(x), fi(y)) ∈ eGXi
).

By the definition of eG , there exists B =
∩

i∈Γ f
−1
i (Bi) ∈ G such that

̸⊢
(
y ∈

∩
i∈Γ

f−1
i (Bi) → x ∈

∩
i∈Γ

f−1
i (Bi)

)
⊢ (∀i ∈ Γ)((fi(x), fi(y)) ∈ eGXi

).

Since

⊢
∩
i∈Γ

(
y ∈ f−1

i (Bi) → x ∈ f−1
i (Bi)

)
→

(
y ∈

∩
i∈Γ

f−1
i (Bi) → x ∈

∩
i∈Γ

f−1
i (Bi)

)
and ⊢ (∀i ∈ Γ)((fi(x), fi(y)) ∈ eGXi

), by Modus Ponens,

⊢
(
y ∈

∩
i∈Γ

f−1
i (Bi) → x ∈

∩
i∈Γ

f−1
i (Bi)

)
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It is a contradiction. Hence, if (∀i ∈ Γ)((fi(x), fi(y)) ∈ eGXi
), then

(x, y) ∈ eG .
(6) Suppose there exist x, y ∈ X such that

(x, y) ∈ eG∗ , ̸⊢ (∀i ∈ Γ)((fi(x), fi(y)) ∈ eG∗
Xi
.

Then there exists i0 ∈ Γ such that

(x, y) ∈ eG∗ , (fi0(x), fi0(y)) ̸∈ eG∗
Xi0

.

Then there exists Ai0 ∈ G∗
i0

such that

(x, y) ∈ eG∗ , ̸⊢ (fi0(x) ∈ Ai0 → fi0(y) ∈ Ai0).

Put A = f−1
i0

(Ai0) ∪ (
∪

i ̸=i0
f−1
i (∅)). Then ⊢ ((x, y) ∈ eG∗ → (fi0(x) ∈

Ai0 → fi0(y) ∈ Ai0)). By Modus Ponens, ⊢ (fi0(x) ∈ Ai0 → fi0(y) ∈
Ai0)). It is a contradiction.
Hence, if (x, y) ∈ eG∗ , then (∀i ∈ Γ)((fi(x), fi(y)) ∈ eG∗

Xi
).

Suppose there exist x, y ∈ X such that

(x, y) ̸∈ eG∗ ,⊢ (∀i ∈ Γ)((fi(x), fi(y)) ∈ eG∗
Xi
).

Then there exists A =
∪

i∈Γ f
−1
i (Ai) ∈ G∗ such that

̸⊢
(
x ∈

∪
i∈Γ

f−1
i (Ai) → y ∈

∪
i∈Γ

f−1
i (Ai)

)
⊢ (∀i ∈ Γ)((fi(x), fi(y)) ∈ eG∗

Xi
).

Since

⊢
∩
i∈Γ

(
x ∈ f−1

i (Ai) → y ∈ f−1
i (Ai)

)
→

(
x ∈

∪
i∈Γ

f−1
i (Ai) → y ∈

∪
i∈Γ

f−1
i (Ai)

)
By Modus Ponens,

⊢
(
x ∈

∪
i∈Γ

f−1
i (Ai) → y ∈

∪
i∈Γ

f−1
i (Ai)

)
.
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It is a contradiction. Hence, if (∀i ∈ Γ)((fi(x), fi(y)) ∈ eG∗
Xi
), then

(x, y) ∈ eG∗ .

We have (x, y) ∈ eG∗ iff ⊢ (∀B ∈ G∗)(x ∈ B → y ∈ B) iff ⊢ (∀B∗ ∈
G)(y ∈ B∗ → x ∈ B∗) iff (x, y) ∈ eG .

(7) Let B ∈ G. Then B ⊂ {x ∈ X | (∃y ∈ X)((x, y) ∈ eG & y ∈ B)}
because

⊢ ((x, x) ∈ eG & x ∈ B) → (∃y ∈ X)((x, y) ∈ eG & y ∈ B).

Since B ∈ G, then

⊢ ((x, y) ∈ eG & y ∈ B) → (y ∈ B → x ∈ B) & y ∈ B

⊢ (y ∈ B → x ∈ B) & y ∈ B → x ∈ B

By Modus Ponens, ⊢ ((x, y) ∈ eG & y ∈ B) → x ∈ B. Thus, {x ∈
X | (∃y ∈ X)((x, y) ∈ eG & y ∈ B)} ⊂ B. Hence B = ⟨eG⟩(B). Thus,
B ∈ G⟨eG⟩. So, G ⊂ G⟨eG⟩.

For B =
∪

i∈Γ f
−1
i (Bi) with Bi ∈ Gi, (y ∈

∪
i∈Γ f

−1
i (Bi)) & (x, y) ∈

eG implies (∃i ∈ Γ)(fi(y) ∈ Bi & (fi(x), fi(y)) ∈ eGi implies (∃i ∈
Γ)(fi(y) ∈ Bi & (fi(y) ∈ Bi → fi(x) ∈ Bi) implies x ∈

∪
i∈Γ f

−1
i (Bi).

Thus B is an e−1
X -upper set. By Theorem 2.3(2), B = ⟨eG⟩(B). Hence∪

i∈Γ f
−1
i (Bi) ∈ G⟨eG⟩.

(8) Let A ∈ G∗. ⊢ (∀y ∈ X)(((x, y) ∈ eG∗ → y ∈ A) → x ∈ A).
Conversely, since ⊢ (∀y ∈ X)((x ∈ A) & (x ∈ A → y ∈ A) → y ∈ A)
and ⊢ (∀x, y ∈ X)((x, y) ∈ eG∗ → (x ∈ A → y ∈ A), we have ⊢ (∀y ∈
X)(x ∈ A & (x, y) ∈ eG∗ → y ∈ A iff ⊢ (x ∈ A) → ((x, y) ∈ eG∗ → y ∈
A). Hence [eG∗ ](A) = A. Thus, A ∈ FeG∗ . So, G∗ ⊂ F[eG∗ ].

For A =
∩

i∈Γ f
−1
i (Ai) with Ai ∈ G∗

i , (x ∈
∪

i∈Γ f
−1
i (Ai)) & (x, y) ∈

eG∗ implies (∃i ∈ Γ)(fi(x) ∈ Ai & (fi(x), fi(y)) ∈ eG∗
i
implies (∃i ∈

Γ)(fi(x) ∈ Ai & (fi(x) ∈ Ai → fi(y) ∈ Ai) implies y ∈
∪

i∈Γ f
−1
i (Ai).

Thus A is eX -upper set. By Theorem 2.3(2), A = [eG∗ ](A). Hence
A =

∩
i∈Γ f

−1
i (Ai) ∈ F[eG∗ ]. �

Example 3.2. Let X = {a, b, c, d} be a set, G1 = {{a, b}, X} and
G2 = {{b, c}, X}. Then G = {{a, b}, {b, c}, {b}, X} be the coarsest
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closure system which is finer than Gi for i = 1, 2. We obtain

eG1 = {(a, a)(a, b), (a, c), (a, d), (b, a)(b, b), (b, c), (b, d),
(c, c), (c, d), (d, c), (d, d)},

eG2 = {(a, a)(a, d), (b, a)(b, b), (b, c), (b, d),
(c, a), (c, b)(c, c), (c, d), (d, a), (d, d)},

eG = eG1 ∩ eG1 = {(a, a)(a, d), (b, a)(b, b), (b, c), (b, d),
(c, c), (c, d), (d, d)},

G∗
1 = {∅, {c, d}}, G∗

2 = {∅, {a, d}}.

Then G∗ = {∅, {c, d}, {a, d}, {d}} is the coarsest interior system which
is finer than G∗

i for i = 1, 2. In particular, eG1 = eG∗
1
, eG2 = eG∗

2
, eG =

eG∗ and
G⟨eG⟩ = {∅, {a, b}, {b, c}, {b}, {a, b, c}, X}

F[eG∗ ] = {∅, {c, d}, {a, d}, {a, c, d}, {d}, X}.

Theorem 3.3. Let X be a set and {(Xi, eXi)}i∈Γ a family of pre-
order sets. Let fi : X → Xi be a function for each i ∈ Γ. We define
the relation eX ⊂ X ×X by

(x, y) ∈ eX iff (∀i ∈ Γ)((fi(x), fi(y)) ∈ eXi).

Then we have the following statements:
(1) eX is the coarsest preorder on X for which each fi is an order

preserving map.
(2) A function f : (Y, e′X) → (X, eX) is an order preserving map iff

fi ◦ f : (Y, e′X) → (Xi, eXi) is an order preserving map, for each i ∈ Γ.

(3) eX = eG⟨eX⟩ = eG where G = {
∩

i∈Γ f
−1
i (Bi) | Bi ∈ G⟨eXi

⟩}.
(4) ⟨eX⟩(A) ⊂

∩
i∈Γ f

−1
i (⟨eXi

⟩(fi(A))). If Γ = {i}, the equality
holds.

(5) [eX ](A) ⊃
∪

i∈Γ f
−1
i ([eXi ]((fi(A

c)c))). If Γ = {i}, the equality
holds.

(6)
∩

i∈Γ f
−1
i (F[eXi

]) ⊂ F[eX ]. If Γ = {i}, the equality holds.

(7)
∪

i∈Γ f
−1
i (G⟨eXi

⟩) ⊂ G⟨eX⟩. If Γ = {i}, the equality holds.
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Proof. (1) We easily show that eX is the coarsest preorder on X for
which each fi is an order preserving map.

(2) (⇒) It is trivial because the composition of order preserving
maps is an order preserving map.

(⇐) Let fi ◦ f : (Y, e′Y ) → (Xi, eXi) be an order preserving map for
each i ∈ Γ. For each x, y ∈ Y ,

⊢ (x, y) ∈ e′Y → (∀i ∈ Γ)((fi(f(x)), fi(f(y))) ∈ eXi)

iff ⊢ (x, y) ∈ e′Y → (f(x), f(y)) ∈ eX .

Hence f : (Y, e′Y ) → (X, eX) is an order preserving map.

(3) First, we show that (∀i ∈ Γ, Bi ∈ G⟨eXi
⟩)(y ∈

∩
i∈Γ f

−1
i (Bi) →

x ∈
∩

i∈Γ f
−1
i (Bi)) iff (∀i ∈ Γ)(Bi ∈ G⟨eXi

⟩)(y ∈ f−1
i (Bi) → x ∈

f−1
i (Bi)). Since f−1

i (Bi) = f−1
i (Bi) ∩ (

∩
j∈Γ−{i} f

−1
j (Xj)), (∀i ∈

Γ, Bi ∈ G⟨eXi
⟩)(y ∈

∩
i∈Γ f

−1
i (Bi) → x ∈

∩
i∈Γ f

−1
i (Bi)) implies (∀i ∈

Γ)(Bi ∈ G⟨eXi
⟩)(y ∈ f−1

i (Bi) → x ∈ f−1
i (Bi)). Conversely, it follows

from
⊢
∩
i∈Γ

(
y ∈ f−1

i (Bi) → x ∈ f−1
i (Bi)

)
→

(
y ∈

∩
i∈Γ

f−1
i (Bi) → x ∈

∩
i∈Γ

f−1
i (Bi)

)
Thus,

(x, y) ∈ eG iff(∀B ∈ G)(y ∈ B → x ∈ B)

iff(∀i ∈ Γ, Bi ∈ G⟨eXi
⟩)(y ∈

∩
i∈Γ

f−1
i (Bi)

→ x ∈
∩
i∈Γ

f−1
i (Bi))

iff(∀i ∈ Γ)(Bi ∈ G⟨eXi
⟩)(y ∈ f−1

i (Bi) → x ∈ f−1
i (Bi))

iff(∀i ∈ Γ)((fi(x), fi(y)) ∈ eG⟨eX⟩)

iff(x, y) ∈ eG⟨eX⟩ = eX ( by Theorem 2.6(5)).

(4) Let y ∈ fi(⟨eX⟩(A)) with x ∈ ⟨eX⟩(A) and y = fi(x). Then
(x, z) ∈ eX & z ∈ A implies (fi(x), fi(z)) ∈ eXi & fi(z) ∈ fi(A). Then
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y = fi(x) ∈ ⟨eXi⟩(fi(A)). Then fi(⟨eX⟩(A)) ⊂ ⟨eXi⟩(fi(A)). Hence fi
is C-map for each i ∈ Γ. Thus, ⟨eX⟩(A) ⊂

∩
i∈Γ f

−1
i (⟨eXi⟩(fi(A))).

If Γ = {i}, suppose that there exists A ∈ P (X) with

⟨eX⟩(A) ̸⊃ f−1
i (⟨eXi⟩(fi(A))).

Then there exists x ∈ X such that

x ∈ f−1
i (⟨eXi⟩(fi(A))), x ̸∈ ⟨eX⟩(A).

Since x ∈ f−1
i (⟨eXi⟩(fi(A))), then fi(x) ∈ ⟨eXi⟩(fi(A)) iff (∃z ∈

X)((fi(x), fi(z)) ∈ eXi & z ∈ A) iff (x, z) ∈ eX & z ∈ A. Then x ∈
⟨eX⟩(A). It is a contradiction. Hence ⟨eX⟩(A) ⊃ f−1

i (⟨eXi⟩(fi(A))).
(5) Let y ∈ f−1

i ([eXi ](B)). Then fi(y) ∈ [eXi ](B). Then (∀z ∈
Xi)((fi(x), z) ∈ eXi → z ∈ B) implies (∀y ∈ X)((fi(x), fi(y)) ∈ eXi →
fi(y) ∈ B) implies (∀y ∈ X)((x, y) ∈ eX → y ∈ f−1

i (B)). Hence

f−1
i ([eXi ](B)) ⊂ [eX ](f−1

i (B)). So,

[eX ](A) ⊃
∪
i∈Γ

f−1
i ([eXi ]((fi(A

c)c))).

If Γ = {i}, suppose that there exists A ∈ P (X) with

[eX ](A) ̸⊂ f−1
i ([eXi ]((fi(A

c)c))).

Then there exists x ∈ X such that

x ̸∈ f−1
i ([eXi

]((fi(A
c)c))), x ∈ [eX ](A).

Since x ̸∈ f−1
i ([eXi ]((fi(A

c)c))), fi(x) ∈ ([eXi ]((fi(A
c)c)))c iff fi(x) ∈

(⟨eXi
⟩(fi(Ac))) iff (∃y ∈ Xi)((fi(x), y) ∈ eXi

& y ∈ fi(A
c)) iff (∃z ∈

X)((x, z) ∈ eX & z ∈ Ac), then x ̸∈ [eX ](A). It is a contradiction.
Hence [eX ](A) ⊂ f−1

i ([eXi ]((fi(A
c)c))).

(6) Let A =
∪

f−1
i (Ai) ∈

∪
i∈Γ f

−1
i (F[eXi

]) with eXi -upper set Ai.

Since x ∈
∪

f−1
i (Ai) & (fi(x), fi(y)) ∈

∩
i∈Γ eXi implies (∃i ∈ Γ)

(
x ∈

f−1
i (Ai) & (fi(x), fi(y)) ∈ eXi → x ∈ f−1

i (Ai), then A =
∪
f−1
i (Ai) is

eX -upper set;i.e. eX(A) = A. Hence A ∈ F[eX ].



The properties of rough approximations 229

If Γ = {i}, let A ∈ F[eX ]. By (5), Then

A = [eX ](A) = f−1
i ([eXi ]((fi(A

c)c))).

Since [eXi ]((fi(A
c)c)) = [eXi ]([eXi ]((fi(A

c)c))), A ∈ f−1
i (F[eXi

]).

(7) Let B =
∩
f−1
i (Bi) ∈

∩
i∈Γ f

−1
i (G⟨eXi

⟩) with e−1
Xi

-upper set Bi.

Since y ∈
∩
f−1
i (Bi) & (fi(x), fi(y)) ∈

∩
i∈Γ eXi implies (∀i ∈ Γ)

(
x ∈

f−1
i (Bi) & (fi(x), fi(y)) ∈ eXi

)
→ x ∈

∩
f−1
i (Bi), then B ∈ G⟨eX⟩.

If Γ = {i}, let A ∈ G⟨eX⟩. By (4), Then

A = ⟨eX⟩(A) = f−1
i (⟨eXi⟩(fi(A))).

Since ⟨eXi⟩(fi(A)) = ⟨eXi⟩(⟨eXi⟩(fi(A))), A ∈ f−1
i (G⟨eXi

⟩).
�

Example 3.4. Let X = {a, b, c, d}, Y = {x, y, z} and Z = {u, v, w}
be sets. Let eY and ez be preodered set as follows

eY = {(x, x), (y, y), (z, z), (x, z), (z, y)(x, y)}

eZ = {(u, u), (v, v), (w,w), (u, v), (v, w)(u,w)}

Define f1 : X → Y and f2 : X → Z as

f1(a) = x, f1(b) = f1(c) = y, f1(d) = z,

f2(a) = f2(b) = u, f1(c) = v, f2(d) = w.

We obtain

eX = {(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (c, c), (c, d), (d, d)},

[eY ](A) =


{y} if {y} ⊂ A, {y, z} ̸⊂ A,

{y, z} if A = {y, z}
Y if A = Y,

∅ otherwise,
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[eZ ](B) =


{w} if {w} ⊂ A, {v, w} ̸⊂ A,

{v, w} if A = {v, w}
Z if A = Y,

∅ otherwise,

[eX ](A) =



{d} if {d} ⊂ A, {c} ̸⊂ A,

{c} if {c} ⊂ A, {d} ̸⊂ A,

{b, c} if {b, c} ⊂ A, {d} ̸⊂ A,

{c, d} if {c, d} ⊂ A, {b} ̸⊂ A,

{b, c, d} if A = {b, c, d},
X if A = X,

∅ otherwise,

Then [eX ](A) ⊃
∪

i∈Γ f
−1
i ([eXi ]((fi(A

c)c))). In general,

{c} = [eX ]({c}) ̸=
∪
i∈Γ

f−1
i ([eXi ]((fi({c}c)c))) = ∅.

Moreover,

F[eY ] = {∅, {y}, {y, z}, Y }, F[eZ ] = {∅, {w}, {v, w}, Z},
F[eX ] = {∅, {c}, {d}, {b, c}, {c, d}, {b, c, d}, X}.

⟨eY ⟩(A) =


Y if {y} ⊂ A,

{x, z} if {z} ⊂ A, {y} ̸⊂ A,

{x} if {x} ⊂ A, {z} ̸⊂ A,

∅ if A = ∅,

⟨eZ⟩(B) =


Z if {w} ⊂ A,

{u, v} if {v} ⊂ A, {u} ̸⊂ A,

{u} if {u} ⊂ A, {v} ̸⊂ A,

∅ if A = ∅,
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⟨eX⟩(A) =



{a} if {a} ⊂ A, {b} ̸⊂ A, {d} ̸⊂ A

{a, b} if {b} ⊂ A, {d} ̸⊂ A,

{a, d} if {d} ⊂ A, {b} ̸⊂ A,

{a, b, c} if {c} ⊂ A, {d} ̸⊂ A,

{a, b, d} if A = {a, b, d},
∅ if A = ∅,
X otherwise,

Then ⟨eX⟩(A) ⊂
∩

i∈Γ f
−1
i (⟨eXi⟩((fi(A)))). In general,

{a, b, d} = ⟨eX⟩({a, b, d})

̸=
∩
i∈Γ

f−1
i (⟨eXi⟩(fi({a, b, d}))) = X.

Moreover,

G⟨eY ⟩ = {∅, {x}, {x, z}, Y }, G⟨eY ⟩ = {∅, {u}, {u, v}, Z},
G⟨eX⟩ = {∅, {a}, {a, d}, {a, b}, {a, b, d}, {a, b, c}, X}.

Using Theorem 3.3, we can define subspaces and products in the
obvious way.

Definition 3.4. Let (X, eX) be a preordered space and A a subset
of X. The pair (A, eA) is said to be a subspace of (X, eX) if eA is the
coarsest preorder on A which the inclusion function i : A → X is an
ordered preserving map.

Definition 3.5. Let {(Xi, eXi) | i ∈ Γ} be a family of preordered
spaces. Let X =

∏
i∈Γ Xi be a product set. The coarsest preorder

eX = ⊗eXi on X with respect to (X,πi, (Xi, eXi)) where πi : X → Xi

is projection map is called the product preorder of {eXi | i ∈ Γ}.
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