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THE PROPERTIES OF ROUGH APPROXIMATIONS
YonG CHAN KiM* AND JunGg M1 Ko

ABSTRACT. We investigated the properties of rough approxima-
tions induced by two families of preordered sets and closure sys-
tems. We study the relations among the lower and upper rough
approximations, closure and interior systems, preordered sets.

1. Introduction

Rough set theory was introduced by Pawlak [7] to generalize the
classical set theory. Rough approximations are defined by a parti-
tion of the universe which is corresponding to the equivalence relation
about information. J. Jarvinen et.al.[3] define rough approximations
on preorder relations that are not necessarily equivalence relations. An
information consists of (X, A) where X is a set of objects and A is a
set of attributes, a map a : X — P(A,) where A, is the value set of
the attribute a. For B C A,

(z,y) € R< (VYa € B)(a(z) = a(y)) (Pawlaki’s sense)

(z,y) € R< (VYa € B)(a(x) C a(y)) (Jarvinen’s sense).

It is an important mathematical tool for data analysis and knowledge
processing [1-8].

In this paper, we investigated the properties of rough approxima-
tions induced by two families of preordered sets and closure systems.
We study the relations among the lower and upper rough approxima-
tions, closure and interior systems, preordered sets.
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Let X be a set. A relation ex C X x X is called a preorder if it
is reflexive and transitive. We can define a preorder ep(x) C P(X) x
P(X) as (A,B) € epx) it AC B for A,B € P(X). If (X,ex) is a
preordered set and we define a function (z,y) € ey iff (y,7) € ex,
then (X, ey") is a preordered set.

2. Preliminaries

DEFINITION 2.1 [6]. (1) A family F = {A € P(X)} is called an
interior system on X if (J,.p A; € F for {A; | i € T} C F. Let Fx
and Fy be interior systems on X and Y, respectively. A function
f (X, Fx) — (Y, Fy) is called an I-map if f~1(A) € Fx for each
A€ Fy.

(2) A family G = {4 € P(X)} is called a closure system on X if
Nier Ai € G for {A; |1 €'} € G. Let Gx and Gy be closure systems
on X and Y, respectively. A function f : (X,Gx) — (Y,Gy) is called
a C-map if f~1(B) € Gx for each B € Gy. Let F; (resp. G1) and F
(resp. G2) be interior (resp. closure) systems on X. Fj (resp. Gip) is
coarser than Fy (resp. Gs) if F1 C Fo (resp. G1 C Go).

DEFINITION 2.2 [4,6]. Let (X,ex) be a preodered set. A set A €
P(X) is called an ex-upper setif (r € A & (z,y) € ex) >y € A for
z,y € X.

THEOREM 2.3 [4-6]. Let (X,ex) be a preordered set. For A €
P(X), we define operations |ex], (ex) as follows:

ex](A) ={x e X | (Vz € X)((z,2) €ex = z€ A)},
lex)(A)={z e X | (Fz€e X)((z,2) eex &z € A)}.
Then the following properties hold.
(DIf (ex)s = {2 € X | (x,2) €ex} and (ex), ' ={z € X | (z,2) €
ex}, then (ex), and ((ex);!)¢ are ex-upper sets.
(2) A is an ex-upper set iff [ex](A) = A iff [ex'](A°) = A° iff
(ex)(A) = A,
(3) If A; is an ex-upper set for all i € I', then |, A; and ;o As
are ex-upper sets.
(4) [ex)(4) = Ui {A; | A € A, A, < ex — upper set}.
(5) (ex)(A) = N;{Ai | AC Ai, A; : e — upper set}.
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DEFINITION 2.4 [3,6]. In above theorem, [ex](A) and (ex)(A) are
called rough lower approximation and rough upper approrimation, re-
spectively, for A € P(X) on a preodered set.

If ex is an equivalence relation, [ex](A) and (ex)(A) are rough
lower approximation and rough upper approximation for A € P(X)
in a Pawlak’s sense [7]. Let (X,ex) and (Y,ey) be preordered sets.
A function f: (X,ex) — (Y,ey) is called an order preserving map if
(f(z), f(y)) € ey for all (z,y) € ex.

THEOREM 2.5 [6]. Let F = {B; € P(X) | ¢ € I'} be an interior
system and F* = {A; € P(X) | AS € F}.

Then; (1) F* is a closure system.

(2) There exists a preorder ex on X such that F C Fj.,) with

(x,y) €eer iff (VB € F)(x € B, >y € B;).
(3) There exists a preorder er+ on X such that F* C F7, ., with

(x,y) €eer~ M (VA; € F*)(ye A; — z € A;).

THEOREM 2.6 [6]. Let (X, ex) be a preordered set. Define Fi. ],

ex)
as follows:

Flex) ={A € P(X) | [ex](4) = A}
Glex) = {A € P(X) | (ex)(4) = A}

Then; (1) [ex](A) C A and [ex](A) = [ex]([ex](A)), for each A €
P(X) with x € [ex]|({y}°) iff (z,y) € ex.

(2) A C (ex)(A) and (ex)(A) = (ex)({ex)(A)), for each A € P(X)
with z € (ex)({y}) iff (z,y) € ex.

(3) Flex) is an interior and closure system with Ix, | = [ex] where
Iz, ((A)=WU{B|BCA, BeFp,}t
(4) G(ey) is an interior and closure system with Cg,, , = (ex) where

Cg<eX>(A) = ﬂ{B ‘ ACB, Be g(ex)}'
(5) er,.,, =ex and eg, , = ex.
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3. The properties of rough approximations

THEOREM 3.1. Let X be a set and {(X;,G;) }icr a family of closure
systems. Let f; : X — X, be a function. Define

G={()f'(Bi)| Bi € G:}.
i€l

Then (1) G is the coarsest closure system on X for which each f; is a
C-map.

(2) 6" = {Uier fH(Ay) | Ay € G} is the coarsest interior system
on X for which each f; is an I-map.

(3) A function f : (Y,G') — (X,G) is a C-map iff fio f: (Y,G) —
(X;,G;) is a C-map, for each i € T.

(4) A function f : (Y, F') — (X,G*) is an I-map iff f;o f : (Y, F) —
(X;,G}) is an I-map, for each i € T

(5) (x,y) € eg iff (Vi € I')((fi(x), fi(y)) € egy,)-

(6) (z,y) € eg~ iff (Vi € T)((fi(z), fi(y)) € eg;{i). In particular,
egx = €g-

(7) G C Gegy = {Mier £ '(Bi), Uier fi ' (Bi) | Bi € Gi}.

(8) G* € Fieg) = {Nier £ (A0 User £ (A9) | A € G7} = {4 |
A€ e Q<eg>}.

Proof. (1) For each k € K with index set K, Ay = (), f Y (Bar) €
G, then Ncx Ak = Nier fi '(Niex Bik) € G. Hence G is a closure
system on X. For B; € G;, since X; € G; because it is the intersection
of empty family, then f;'(B;) = f; *(B;) N (Njer—g f71(X;) € 6.
Hence f; is a C-map. Let f; : (X,G") — (X;,G;) be a C-map. For
B = yer fi '(Bi) € G with B; € G;, then f; '(B;) € G'. Since G’ is a
closure system on X, B € G’, that is, G C G’. Hence G is the coarsest
closure system on X for which each f; is a C-map.

(3) (=) It is trivial because the composition of C-maps is a C-map.

(<) For B =\;or fi "(Bi) € G with B; € G;, then f~1(f;'(B;)) €
G'. It implies f~Y(B) = N;ep f1(f; '(Bs)) € G'. Thus, f is a C-map.

(2) and (4) are similarly proved as in (1) and (3), respectively.

(5) Suppose there exist z,y € X such that (z,y) € eg, but I/ (Vi €
D) (i), fi(w)) € eqy, )i
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Then there exists ig € I" such that (z,y) € eg,

|71 (VB € gio)(fio(y) €B— fio(x) S B)

Then there exists B;, € G;, such that (z,y) € eg,
fio(y) € Bio — fio(x) ¢ Bio'

Put B = fzo ( Zo) (ﬂi;ﬁio fz_l(Xl)) Then
F(z,y) € eg — <y€B—>x€B>.

Since - (z,y) € eg, by Modus Ponens, & (f;,(y) € B;, — fi,(x) € B;,).
It is a contradiction. Hence, if (z,y) € eg, then (Vi € T')((fi(x), fi(y)) €

€Gx, )
Suppose there exist x,y € X such that

(Ivy) € eg,l_ (VZ S F)((fz(x)vfz(y)) S egxi)'

By the definition of eg, there exists B = ;o f; ' (Bi) € G such that

(y € ﬂ f ) >z € ﬂ f )
el el
= (Vi e D)((fi(®), fi(y)) € egx,)-

Since

l—ﬂ(yEf ) —xe f(B )>—>

el
<y€ ﬂf ) —x € ﬂf )
el 1€l

and = (Vi € I')((fi(x), fi(y)) € egy,), by Modus Ponens,

<y€ﬂf —>3:€ﬂf >

el el
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It is a contradiction. Hence, if (Vi € I')((fi(z), fi(y)) € egy, ), then

(z,y) € eg.
(6) Suppose there exist z,y € X such that

(z,y) € eg-, 17 (Vi € D)((fi(), fi(y)) € egy -
Then there exists 7o € I' such that
(z,y) € ege, (fio(x), fio(v)) & €5, -
Then there exists A;, € G; such that
(z,y) € ege, T/ (fio(x) € Aiy = [iy(y) € Aiy)-

Put A = f1(Aiy) U (Ui, fi 1 (0)). Then = ((z,y) € eg- — (fio(2) €
A, = fi,(y) € Aiy)). By Modus Ponens, + (fo( ) e A, — fi,(y) €
A;,)). It is a contradiction.
Hence, if (z,y) € eg-, then (Vi € T')((fi(x), fi(y)) € egy. )-

Suppose there exist x,y € X such that Z

(z,y) & eg-, = (Vi € T)((fi(x), fi(y)) € egy )

Then there exists A = J;op f; '(4i) € G* such that

<:c€Uf —>y€Uf >

el iel

= (Vi e D)((fi(x), fi(y)) € egy. )

Since
I—m(xef D —yefiliA ))—>
el
(erf —>y€Uf )
el el

By Modus Ponens,

(a:eUf D) —yel N )

i€l el
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It is a contradiction. Hence, if (Vi € I')((fi(z), fi(y)) € eg;(i), then
(z,y) € eg-.

We have (x,y) € eg- iff H (VB € G*)(x € B— y € B) iff - (VB* €
G)(y € B* —» x € BY) iff (x,y) € eg.

(7) Let B€G. Then BC{r e X | (Jy € X)((z,y) €eg &y € B)}
because

F((x,z) €eg & x e B)— (Jy € X)((z,y) €Eeg &y € B).
Since B € G, then
F((x,y) €eg&kyeB) - (yeB—z€eB)&yeB

FlyeB—zxze€B)&yeB—»z€B

By Modus Ponens, - ((z,y) € eg & y € B) — x € B. Thus, {z €
X | (Fye X)(z,y) €eg &y e B)} C B. Hence B = (eg)(B). Thus,
B e g<eg>. So, G C g<eg>.

For B = U,cr fi_l(Bi) with B; € G;, (y € U,er fi_l(Bi)) & (z,y) €
eg implies (i € I')(fi(y) € B; & (fi(x), fi(y)) € eg, implies (Fi €
D)(fi(y) € B; & (fi(y) € B; — fi(z) € B;) implies € J,cp fU(By).
Thus B is an ey'-upper set. By Theorem 2.3(2), B = (eg)(B). Hence
Uier fi ' (Bi) € Gieg)-

(8) Let A € G*. F (Vy € X)(((z,y) € eg» -y € A) — x € A).
Conversely, since - (Vy € X)((zr € A) & (r € A—ye A) - yec A
and F (Vz,y € X)((z,y) € eg- = (x € A -y € A), we have - (Vy €
X)(xe A& (z,y) €egr >y € Aiff - (x € A) = ((z,y) Eeg- — y €
A). Hence [eg-](A) = A. Thus, A € F,.. So, G* C Fle,.]-

For A = (\;cr fi_l(Az‘) with A; € G, (v € Ujer fz'_l(Ai)) & (z,y) €
eg~ implies (Ji € T')(fi(x) € A; & (fi(), fi(y)) € eg; implies (Fi €
D)(fi(x) € Ai & (fi(z) € Ai = fi(y) € A;) implies y € Ujer f;7 (4i).
Thus A is ex-upper set. By Theorem 2.3(2), A = [eg~](A). Hence
A= mier fi_l(Az') € Fleg]- O

EXAMPLE 3.2. Let X = {a,b,c,d} be a set, G = {{a,b}, X} and
Go = {{b,c},X}. Then G = {{a,b},{b,c},{b}, X} be the coarsest



226 Yong Chan Kim and Jung Mi Ko

closure system which is finer than G; for i = 1,2. We obtain

eg, = {(a,a)(a,b), (a,c), (a,d), (b,a)(b,b), (b,c), (b, d),
( ¢), (¢, d),(d,c),(d,d)},

eg, = {(a,a)(a,d), (b,a)(b,b), (b,c), (b, d),
( ¢,a), (¢, b)(c, ), (¢,d), (d,a), (d,d)},

eg = eg, Neg, = {(a,a)(a,d), (b,a)(b,b), (b,c), (b,d),
(¢, c), (c,d), (d,d)},

g1 =1{0,{c.d}}, G; ={0.{a,d}}.

Then G* = {0, {c,d}, {a,d},{d}} is the coarsest interior system which
is finer than G} for ¢« = 1,2. In particular, eg, = egr,eg, = egs,eg =

eg+ and
g<6g> = {®> {a’7 b}7 {bv C}= {b}7 {a7 b, C}7 X}
g =1{0.{c,d},{a.d},{a,c,d},{d}, X}.

THEOREM 3.3. Let X be a set and {(X;, ex,)}ier a family of pre-
order sets. Let f; : X — X, be a function for each ¢« € I'. We define
the relation ex C X x X by

(z,y) € ex iff (Vi € D)((f:(), fi(y)) € ex,).

Then we have the following statements:

(1) ex is the coarsest preorder on X for which each f; is an order
preserving map.

(2) A function f : (Y,e'y) — (X, ex) is an order preserving map iff
fiof:(Y,ey) = (Xi,ex,) is an order preserving map, for each i € T'.

(3) ex =eg,, , =eg where G = {(\;cr f7Y(B) | B € Glex,)}

(4) {ex)(A) € Mier £ (ex)(fi(A). If T = {i}, the equality
holds.

(5) [ex](4) D User fi ([ex J((fi(A)))). I T = {i}, the equality
holds.

(6) Nier fi ' (Fiex,1) € Fiex)- T = {i}, the equality holds.

(7) Uier f;l(Q@Xi)) C Gex)- IfT = {i}, the equality holds.
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Proof. (1) We easily show that ex is the coarsest preorder on X for
which each f; is an order preserving map.

(2) (=) It is trivial because the composition of order preserving
maps is an order preserving map.

(<) Let fio f:(Y,ey) = (X;,ex,) be an order preserving map for
each i € I'. For each x,y €Y,

= (2,y) € ey = (Vi € D)((fi(f (@), fi(f())) € ex.)
iff F(x,y) € ey = (f(2), f(y)) € ex.

Hence f: (Y,e}) — (X, ex) is an order preserving map.

(3) First, we show that (Vi € I', B; € Giey y)(y € (ier 7By —
z € Mier fi '(By) iff (Vi € T)(Bi € Giey )y € fi'(B)) = = €
fi_l(Bi))' Since fi_l(Bi) = fi_l(Bi) A (mjeF—{i} fj_l(Xj))7 (Vi €
LBy € Grex )y € Nicr £ (B1) = © € Nyp /7 (B,)) implics (¥ €
D)(Bi € Grex )y € f7Y(B) — x € f71(B;)). Conversely, it follows
from

N (ve s B —wefi(B)

el
— (ye N B)—oe N F7(B))
iel el
Thus,

(z,y) €Eeg iff(VB € G)(y € B— z € B)
iff(Vi € T, B; € Gie )y € () £ (Bi)

el

sae()£7(B)

iff(Vi € T)(B; € Giey,))(y € fi '(Bi) = x € f;71(B)))

ifi(vi € D)((fi(x), fi(y)) € eg,. )
iff(z,y) € eg,, , = ex ( by Theorem 2.6(5)).

(4) Let y € fi({ex)(A)) with € (ex)(A) and y = fi(x). Then
(x,2) € ex & z € A implies (f;(x), fi(2)) € ex, & fi(z) € fi(A). Then
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y = fi(z) € {ex,)(fi(A)). Then fi({ex)(A)) C (ex,)(fi(A)). Hence f;
is C-map for each i € I'. Thus, (ex)(A) C Nicr fi ({ex,)(fi(A4))).
If T" = {i}, suppose that there exists A € P(X) with

(ex)(A) B fi ({ex,) (fi(A))).

Then there exists x € X such that
z € [ ((ex,)(fi(A)), = & (ex)(A).

Since © € [ ((ex,)(fi(A))), then fi(z) € (ex >( i(A4)) if (3= €
X)((fi(x), fi(2) € ex, & z € A) iff (x,2) € ex zEA Then z €
(ex)(A). It is a contradiction. Hence (ex)(A) D f; (( D(fi(A)).

)
(5) Let y € fi'([ex;](B)). Then fi(y) € [ex,](B )- Then (Vz €

Xl)((fz( ),2) € ex, = z € B) implies (Vy € X)((fi(2), fi(y)) € ex, —
fily) € B) implies (Vy € X)((z,y) € ex = y € fi_l(B)). Hence
X;

f7H ([ex)(B)) € [ex](fi H(B))- So,
S U A7 [ex ) (f:(A9)9)).

ier
If T' = {i}, suppose that there exists A € P(X) with
lex](4) ¢ fi (ex,J((fi(A%)9))).
Then there exists 2 € X such that
v & 7 ([lex ] ((fi(A%)9), @ € [ex](A).

lex, J((£i(A%)))), filx) € ([ex,)((fi(A9))))" iff fi(x) €

Since = & f;! ) lex
€ X; )((fz( ):y) € ex, &y € fi(A9)) iff (3z €

(
({ex;)(fi(A°)))

iff (Jy
X)((x,2) € ex & Z € A°), then = ¢ [ex](A). It is a contradiction.
Hence [ex](A) ([ J(£:(A9)%)).
i) € Uier fi (F[EX ) with ex,-upper set A;.

Cfi

(6) Let A= U Jf;

Since x € |J f; 1 (A
) f

YA
D) & (fi@), £:(y) € Nier ex, implies (3 EF)(&: €
i(y

FH(A) & (fila )) € ex, = x € f1(Ay), then A= U fi ' (4) is
ex-upper set;i.e. ex(A4) = A. Hence A € F. ;.
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If T' = {i}, let A € Flcy). By (5), Then
A= [ex](4) = £ (lex,)((fi(A9)))).-

Since [ex,J((fi(A°)9) = [ex.)([ex,((fi(A)))), A € f; (Flex,))-

(7) Let B = f; "(Bi) € Nicr fi‘l(g<exi>) with e;(f—upper set B;.
Since y € N f; 1(Bs) & (fi(2), f;(y)) € Nier ex, implies (Vi € T') (x €
£ (B) & (fi@). fily) € ex,) = x € (V7 (B), then B € Gy,

If T = {i}, let A € Go\. By (4), Then

A= (ex)(A) = fi ({ex,)(fi(A)).

Since (ex;,)(fi(4)) = (ex,)(lex, ) (fi(A)), A € £ (Grex,)): .

ExAMPLE 3.4. Let X ={a,b,c,d}, Y ={x,y,2} and Z = {u,v,w}
be sets. Let ey and e, be preodered set as follows

€y = {(:c,x), (%y)a (sz)v (m72)7 (Z,y)(xay)}
ez = {(w, u), (v,v), (w,w), (v, v), (v,w)(u, w)}
Define f1 : X - Y and fo: X — Z as
fila) ==, f1(b) = fi(c) =y, f1(d) = =,
f2(a) = fo2(b) = u, fi(c) = v, f2(d) = w.
We obtain
ex = {(a,a),(a,b),(a,c), (a,d), (b,), (b,¢), (c,c), (c,d),(d,d)},

v} if{y} CA{y 2} £ A,
{y,z} ifA={y, 2}
Y if A=Y,

0 otherwise,

lev](4) =
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({w} if {fw} C A, {v,w} ¢ A,
{v,w} if A= {v,w}
Z if A=Y,

W otherwise,

( {d} if {d} C A,{c} ¢ A,
{c} if {c} C A, {d} £ A,
{b,c} if {b,c} C A,{d} Z A,
ex](A)={ {ed)  if{ed}c A {0} ¢ A,
{b,c,d} if A={b,c,d},

X if A=X,

L 0 otherwise,

Then [ex](A) D Ujer £; ' (lex,J((£:(A%)%))). In general,

{e} = lex]({e}) # U £ (ex)((fi({e}))) = 0.

iel
Moreover,

f[ey] = {®7 {y}7 {y,z},Y}7 f[ez} = {®7 {w}7 {v7w}7 Z]’?
f[ex] - {®7 {C}, {d}7 {ba C}7 {07 d}7 {b7 ¢, d}7X}

(Y if{y) C 4,
ey it c Al A
WIA=1 1 e el g A
W if A=0,
(7 if {fw} C A,
B {u,v} if{v} C A {u} ¢ A,
CABZN Ly i) c A v} A
W if A=0,
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( {a} if {a} C A,{b} £ A,{d} ¢ A
{a,b} i {b} C A, {d} ¢ A,

{a,d} if {d} C A,{b} A,

(ex)(A) =< {a,b,c} if{c} C A {d} £ A,

{a,b,d} if A={a,b,d},

0 if A=0,

X otherwise,

Then (ex)(A) C Nier fi " ({ex,)((fi(4)))). In general,

{a'7 b, d} = <6X>({a,b, d})
# () £ (ex,) (fi{a,b,d}))) = X.

el

Moreover,

g(ey} = {(Z)v {z},{z, 2}, Y}, g(Gy) = {@, {u}, {u,v}, 7},
Gex) = 1{0,{a},{a,d},{a,b},{a,b,d} {a,b, c}, X}.

Using Theorem 3.3, we can define subspaces and products in the
obvious way.

DEFINITION 3.4. Let (X, ex) be a preordered space and A a subset
of X. The pair (A,en) is said to be a subspace of (X, ex) if e, is the
coarsest preorder on A which the inclusion function i : A — X is an
ordered preserving map.

DEFINITION 3.5. Let {(Xj,ex,) | i € I'} be a family of preordered
spaces. Let X = [],.p Xi be a product set. The coarsest preorder
ex = ®ex, on X with respect to (X, m;, (X;,ex,;)) where m; : X — X;
is projection map is called the product preorder of {ex, | i € T'}.
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