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GENERATING CERTAIN QUINTIC IRREDUCIBLE

POLYNOMIALS OVER FINITE FIELDS

Youngwoo Ahn and Kitae Kim∗

Abstract. In the paper [1], an explicit correspondence between
certain cubic irreducible polynomials over Fq and cubic irreducible
polynomials of special type over Fq2 was established. In this paper,
we show that we can mimic such a correspondence for quintic poly-
nomials. Our transformations are rather constructive so that it can
be used to generate irreducible polynomials in one of the finite fields,
by using certain irreducible polynomials given in the other field.

1. Introduction

Generating irreducible polynomials and determining their irreducibil-
ity have played an important role in the theory of finite fields and its
applications, especially coding theory and cryptography. For designing
cryptographic protocols, A. K. Lenstra and E. Verheul used a cubic ir-
reducible polynomial f(x) = x3 − cx2 + cpx− 1 over the finite field Fp2

where p is an odd prime ([2], [3]). In order to obtain compact repre-
sentation of the elements in Fp6 , they made use of the absolute trace
map. Along with the work, Kim et al. studied in [1] cubic irreducible
polynomials of the same form defined over Fq2 where q is a power of
prime p, and established a correspondence between the set of such irre-
ducible polynomials and the set of irreducible polynomials of the form
g(x) = x3 − tax2 + bx + a in Fq[x] where t is a quadratic non-residue
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in Fq. Their correspondence is so explicit that one can use it to gen-
erate a cubic irreducible polynomial over Fq2 from a cubic irreducible
polynomial over Fq, or vice versa.

In this paper, we establish a one to one correspondence between a
family of irreducible polynomials of the form x5 − cx4 + cqx − 1 over
Fq2 and a family of irreducible polynomials of the form x5 + 3at2x4 +
5+bt2

t
x3 − 2atx2 + bx − a over Fq. Like [1], our approach is somewhat

theoretical but the transformations are constructive. Thus it provides
an efficient method to generate quintic irreducible polynomials over Fq2 ,
starting with certain irreducible polynomials of over Fq.

2. Certain quintic irreducible polynomials

In this section, we give a one to one correspondence between the set
of certain quintic irreducible polynomials over Fq2 and over Fq.

Let p be an odd prime. We assume that every field of characteristic
p that we consider is a subfield of a fixed algebraic closure of the prime
field Fp. Then the Galois field Fq is uniquely determined by the number
q = pk of elements that it contains.

Since p is odd, half of the elements of F∗
q are non-squares in Fq. Let t

be a non-square element in Fq. Then t becomes a square in the quadratic
extension Fq2 , say t = α2 for some α ∈ Fq2 .

From now on, α will stand for an element of Fq2 \ Fq such that α2 =
t ∈ Fq. Then (αq)2 = (α2)q = tq = t and hence αq = −α. Moreover, we
have Fq2d = Fqd(α) for any positive odd integer d.

Suppose that F (x) = x5−cx4+cqx−1 is an irreducible polynomial in
Fq2 whose all roots are hi where 1 ≤ i ≤ 5. Since −x5qF (x−q) = F (x)q,

h−q
i ’s represent five different roots of F (x), for if h−q

i = h−q
j then h−1

i =

h−q5

i = h−q5

j = h−1
j .

The complete factorization of F over its splitting field Fq10 can be
written as

F (x) =
5∏

i=1

(x− hi) =
5∏

i=1

(x− h−q
i ).

We claim that hi = h−q5

i for each i = 1, . . . , 5. First note that hi ̸= h−q
i

for each i. If not, then hq+1
i = 1 for some i and so hq2−1

i = 1. That is,
hi ∈ Fq2 which contradicts to the irreducibility of F (x). If h1 = h−q

2 , h2 =
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h−q
1 then h1 = hq2

1 so h1 ∈ Fq2 which also contradicts to the irreducibility

of the polynomial. Moreover, if h1 = h−q
2 , h2 = h−q

3 , h3 = h−q
1 then h4

must be hq2

4 which is a contradiction. Hence the claim is proved.

Since hi = h−q5

i for each i, hih
q5

i = 1 and so the norm of hi over Fq5

is 1: Nq10/q5(hi) = hih
q5

i = 1. It follows from Hilbert 90 that hi = gq
5−1

i

for each i.

Now we will discuss our one to one correspondence between quintic
irreducible polynomials of the form x5−cx4+cqx−1 over Fq2 and certain
quintic irreducible polynomials over Fq.

Theorem 1. Let Fq be a finite field of characteristic p and t a qua-
dratic non-residue in Fq with t = α2 for some α ∈ Fq2 . There is a one to
one correspondence between the set of irreducible polynomials in Fq2 of
the form

x5 − cx4 + cqx− 1(1)

and the set of irreducible polynomials in Fq of the form

x5 + 3at2x4 + 5+bt2

t
x3 − 2atx2 + bx− a(2)

The correspondence is given by:

For a given F (x) = x5 − cx4 + cqx− 1 with c = m+ nα, we associate
G(x) = x5 − 3n

m+1
x4 + 10+2m

(m+1)t
x3 + 2n

(m+1)t
x2 + 5−3m

(m+1)t2
x+ n

(m+1)t2
.

For a given G(x) = x5+3at2x4+ 5+bt2

t
x3−2atx2+bx−a, we associate

F (x) = x5 − cx4 + cqx− 1 with c = 5−bt2

3+bt2
+ −8at2

3+bt2
α.

Proof. Let h1, h2, · · · , h5 be all the roots of F (x) = x5− cx4+ cqx−1.

Then for each i, hq
i = h−1

i and hi = gq
5−1

i for some gi ∈ Fq10 . Recall that
αq = t(q−1)/2α = −α and Fq10 = Fq5(α) is the quadratic extension of Fq5 .
Since gi ∈ Fq10 , for each i, gi can be represented as gi = γi1 + γi2α for

some γi1, γi2 ∈ Fq5 . Notice that γi,1 cannot be 0. If not, hi = (γi2α)
q5−1 =

αq5α−1 = −αα−1 = −1, a contradiction. Thus we can rewrite hi as, by
letting βi = γi2/γi1 ∈ Fq5 ,

hi = gq
5−1

i = (γi1 + γi2α)
q5−1 =

(
1 +

γi2
γi1

α

)q5−1

= (1 + βiα)
q5−1 .
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Now the polynomial F (x) defined over Fq2 can be expressed by

F (x) =
5∏

i=1

(
x− 1− βiα

1 + βiα

)
.(3)

Here we used the fact that

(1 + βiα)
q5−1 =

(1 + βiα)
q5

1 + βiα
=

1 + βq5

i αq5

1 + βiα
=

1− βiα

1 + βiα
.

Now we associate the irreducible polynomial F (x) over Fq2 to an
irreducible polynomial F∗(x) defined in the field Fq whose roots are
β1, β2, . . . , β5:

F∗(x) =
5∏

i=1

(x− βi).

Let us denote σi the ith elementary symmetric polynomial of β1, . . . , β5.
We then calculate the constant term of F (x):

5∏
i=1

1− βiα

1 + βiα
=

(1 + σ2t+ σ4t
2)− (σ1 + σ3t+ σ5t

2)α

(1 + σ2t+ σ4t2) + (σ1 + σ3t+ σ5t2)α
.

Since the constant term of F (x) is −1 and p is an odd prime, we obtain

σ1 + σ3t+ σ5t
2 = 0.

Note that 1 + σ2t+ σ4t
2 ̸= 0, for otherwise

∏5
i=1 hi = −1 this leads to a

contradiction.
Similarly, by straightforward calculation and comparing the coeffi-

cients, we have

c =
(5 + σ2t− 3σ4t

2) + (3σ1 − σ3t− 5σ5t
2)α

1 + σ2t+ σ4t2
,

0 =
(10− 2σ2t+ 2σ4t

2) + (2σ1 − 2σ3t+ 10σ5t
2)α

1 + σ2t+ σ4t2
.

Thus we get the following equations

σ1 + σ3t+ σ5t
2 = 0,

σ1 − σ3t+ 5σ5t
2 = 0,

5− σ2t+ σ4t
2 = 0.

So

σ1 = −3σ5t
2, σ2t = 5 + σ4t

2 and σ3t = 2σ5t
2.(4)
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Furthermore, by letting c = m+ nα for m,n ∈ Fq, we have

m =
5 + σ2t− 3σ4t

2

1 + σ2t+ σ4t2
,(5)

n =
3σ1 − σ3t− 5σ5t

2

1 + σ2t+ σ4t2
.(6)

Applying Eq (4) into the equations (5) and (6), we get

m =
10− 2σ4t

2

6 + 2σ4t2
=

5− σ4t
2

3 + σ4t2
,

n =
−16σ5t

2

6 + 2σ4t2
=

−8σ5t
2

3 + σ4t2
.

So

σ4t
2 =

5− 3m

m+ 1
and σ5t

2 =
−n

m+ 1
.

Note that m+ 1 ̸= 0 because if m = −1 then c = −1 + nα and so −1 is
a root of F (x) which contradicts to the irreducibility of F (x). Thus, we
have the coefficients of F∗(x) = x5 − σ1x

4 + σ2x
3 − σ3x

2 + σ4x − σ5 as
follows:

σ1 = −3σ5t
2 =

3n

m+ 1
,

σ2 =
5 + σ4t

2

t
=

10 + 2m

(m+ 1)t
,

σ3 = 2σ5t =
−2n

(m+ 1)t
,

σ4 =
5− 3m

(m+ 1)t2
,

σ5 =
−n

(m+ 1)t2
.

Recall that βi ∈ Fq5 and hi = (1 + βiα)
q5−1. So if βi ∈ Fq then hi ∈ Fq2

which leads to a contradiction. Hence βi’s are not contained in Fq and
hence we conclude that the polynomial F∗(x) is irreducible over Fq of
the required form.

Conversely, suppose that G(x) is an irreducible polynomial defined in
Fq[x] of the form

x5 + 3at2x4 + 5+bt2

t
x3 − 2atx2 + bx− a.(7)
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Let β1, β2, . . . , β5 be all the roots of F∗(x) in Fq5 . Then

G(x) = (x− β1)(x− β2) · · · (x− β5)

and by rearranging, we may assume that βq
i = βi+1 mod 5.

Define a polynomial F (x) over Fq2 to be

G∗(x) =
5∏

i=1

(
x− (1 + βiα)

q5−1
)
.

As above, let hi = (1+βiα)
q5−1 and σi be the ith elementary symmetric

polynomial of βj’s. Then hi =
1−βiα
1+βiα

. Before computing coefficients of

F , we note that the roots of the polynomial F are conjugate to each
other over Fq2 . This means that the polynomial is irreducible over Fq2 .

From the definition of F∗(x), we have the following equalities

10− 2σ2t+ 2σ4t
2 = 10− 2(5 + σ4t

2) + 2σ4t
2 = 0,

2σ1 − 2σ3t+ 10σ5t
2 = 2(−3σ5t

2)− 2(2σ5t
2) + 10σ5t

2 = 0,

σ1 + σ3t+ σ5t
2 = −3σ5t

2 + 2σ5t
2 + σ5t

2 = 0.

In order to describe coefficients of F (x) in terms of values in Fq2 , we

first note that
∏5

i=1(1 + βiα) = (1 + σ2t + σ4t
2) + (σ1 + σ3t + σ5t

2)α =
1+σ2t+σ4t

2, which is not zero because if not then 1+βiα = 0 for some
i and so α ∈ Fq, a contradiction.

A straightforward computation shows that

5∏
i=1

(1 + βiα)h1h2h3h4h5

= (1 + σ2t+ σ4t
2)− (σ1 + σ3t+ σ5t

2)α(8)

= 1 + σ2t+ σ4t
2

5∏
i=1

(1 + βiα)
∑

i1<i2<i3<i4

hi1hi2hi3hi4(9)

= (5 + σ2t− 3σ4t
2)− (3σ1 − σ3t− 5σ5t

2)α
5∏

i=1

(1 + βiα)
∑

i1<i2<i3

hi1hi2hi3(10)

= (10− 2σ2t+ 2σ4t
2)− (2σ1 − 2σ3t+ 10σ5t

2)α = 0



Generating certain quintic irreducible polynomials over finite fields 269

5∏
i=1

(1 + βiα)
∑
i1<i2

hi1hi2(11)

= (10− 2σ2t+ 2σ4t
2) + (2σ1 − 2σ3t+ 10σ5t

2)α = 0
5∏

i=1

(1 + βiα)
5∑

i=1

hi(12)

= (5 + σ2t− 3σ4t
2) + (3σ1 − σ3t− 5σ5t

2)α.

The equations (11) and (12) say that the coefficients of x2 and x3 are
zero, respectively. The equation (9) tells us the constant term is −1.

Now we let c = m+ nα where

m =
5 + σ2t− 3σ4t

2

1 + σ2t+ σ4t2
and n =

3σ1 − σ3t− 5σ5t
2

1 + σ2t+ σ4t2
.

Then the coefficient of x4 is c and the coefficient of x is cq by the facts
αq = −α and the equations (10) and (13).

The one to one correspondence is immediate from our transforma-
tions. To be precise, suppose that F (x) = x5 − cx4 + cqx − 1 is an
irreducible polynomial over Fq2 where c = m+ nα. Then, by the trans-
formation above, we get F∗(x) = x5 − 3n

m+1
x4 + 10+2m

(m+1)t
x3 + 2n

(m+1)t
x2 +

5−3m
(m+1)t2

x + n
(m+1)t2

. Then the lifted irreducible polynomial (F∗)
∗(x) =

x5−c′x4+(c′)qx−1 to Fq2 is F (x) again, because, if we let c′ = m′+n′α,

m′ =
5 + 10+2m

(m+1)t
t− 3 5−3m

(m+1)t2
t2

1 + 10+2m
(m+1)t

t+ 5−3m
(m+1)t2

t2
= m,

n′ =
3 3n
m+1

− −2n
(m+1)t

t− 5 −n
(m+1)t2

t2

1 + 10+2m
(m+1)t

t+ 5−3m
(m+1)t2

t2
= n.

Thus (F∗)
∗ and F are the same. Conversely, suppose that G(x) = x5 +

3at2x4 + 5+bt2

t
x3 − 2atx2 + bx− a is an irreducible polynomial defined in

Fq[x] and G∗ is the lifted polynomial by our transformation, say G∗(x) =
x5 − cx4 + cqx− 1 with c = m+ nα, where

m =
5− bt2

3 + bt2
and n =

−8at2

3 + bt2
.
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Then the quintic polynomial (G∗)∗ obtained from G∗ is again G: if −a′

and b′ are constant term and coefficient of x, respectively, then

a′ =
−n

(m+ 1)t2
=

8at2

3+bt2(
5−bt2

3+bt2
+ 1

)
t2

= a,

b′ =
5− 3m

(m+ 1)t2
=

5− 35−bt2

3+bt2(
5−bt2

3+bt2
+ 1

)
t2

= b.

Since the remaining terms are completely determined by the constant
term and the degree 1 term we conclude the correspondence is one to
one as required.

3. Examples

In this section, we shall give two examples to explain our transfor-
mation for finite fields F5 and F17. In order to obtain an irreducible
polynomial over Fp2 , we should first find an irreducible polynomial G(x)
of the desired form in Fp[x] where p is an odd prime.

Note that t = 2 is a quadratic non-residue of p = 5. If we set a = 1
and b = 0, then G(x) = x5 + 2x4 + x2 − 1 satisfies the condition as in
the theorem. To be precise, we show that G(x) is irreducible over F5.

Suppose that G has a root γ in F5. Then

G(γ) = γ5 + 2γ4 + γ2 − 1 = γ2 + γ1 + 1 = (γ − 2)2 − 3.

Since 3 is not a square in F5, G(γ) cannot be zero. Hence, G(x) has no
roots in F5.

Now consider the following irreducible polynomials over F5:

x2 ± 2, (x± 1)2 ± 2, (x± 2)2 ± 2.

Since ±2 are quadratic non-residues mod 5 and the number of quadratic
irreducible polynomials over F5 is 10, those are all of the irreducible
polynomials of degree 2 over F5. If x

2 ± 2 divides G(x) then

x5 + 2x4 + x2 − 1 = (x2 ± 2)(x3 + d2x
2 + d1x+ d0).

Comparing the coefficients, we have d1 = 0 and d1 ± 2 = 0. So, x2 ±
2 cannot divide G(x). Similarly, no quadratic irreducible polynomials
divide G(x), and hence we can conclude that G(x) is irreducible over F5.
Now, by applying our transformation, we have

G∗(x) = x5 − cx4 + c5x− 1,
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where c = m + nα. Since m = 5−bt
3+bt2

= 5
3
= 0 and n = −8at2

3+bt2
= −32

3
= 1,

c = α and c5 = t2α = −α. Hence

G∗(x) = x5 − αx4 − αx− 1.

For a second example, we first note that, for a prime p with p ≡ 2, 3
(mod 5), 5 is a quadratic non-residue mod p. When p = 17, −5 is
also a quadratic non-residue mod 17. As in the above example, we
set a = 1, b = 0 and compute the lifted irreducible polynomials of the
following polynomials:

G(x) = x5 + 7x4 + x3 + 7x2 − 1 , t = 5

G̃(x) = x5 + 7x4 − x3 − 7x2 − 1 , t = −5.

From the values a, b and t, we get

m =
5

3
= 5 · 6 = −4, n =

−8 · 52

3
= 4 · 3−1 = 7 and c = −4 + 7α.

Then G(x) and G̃(x) are transformed into the same irreducible polyno-
mial x5 + (4− 7α)x4 − (4 + 7α)x− 1.

In concluding remarks, we investigate some properties of such polyno-
mials as in our theorem.

First, let us denote the polynomial x5 + 3at2x4 + 5+bt2

t
x3 − 2atx2 +

bx− a by G(x, a, b), or simply G(x). Then we have G̃(x) = −G(−x) =
G(x,−a, b). That is, if G is irreducible then so is G̃, and vice versa.

Second, consider the lifted irreducible polynomials G∗(x) and G̃∗(x)
of G(x) and G̃(x) , respectively, where the polynomials satisfy the above
property. Then G∗ and G̃∗ have the form G∗(x) = x5 − cx4 + cqx − 1
and G̃∗(x) = x5 − c̃x4 + c̃qx − 1 where c = m + nα and c̃ = m̃ + ñα,

respectively. Since m̃ = m and ñ = −8(−a)t2

3+bt2
= −−8at2

3+bt2
= −n, we have

cq = (m+ nα)q = mq + nqαq = m+ n(−α) = m− nα = c̃.

Similarly, c̃q = m̃− ñα = c.

−x5G∗(x−1) = −x5(x−5 − cx−4 + cqx−1 − 1)

= x5 − cqx4 + cx− 1

= x−5 − c̃x−4 + c̃qx− 1

= G̃∗(x)

Thus G̃∗ is the reciprocal of G∗.
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Finally, in the paper [1] the authors gave another one-to-one corre-
spondence between cubic irreducible polynomials of certain types. Namely,
there is a one-to-one correspondence between the set of irreducible poly-
nomials in Fq2 [x] of the form f(x) = x3 − cx2 + cqx − 1 and the set of
irreducible polynomials in Fq[x] of the form x3 + ux2 − tx + v. In fact,
this correspondence is obvious in the sense that one can easily get such a
correspondence by associating f(x) to the reciprocal g∗(x) = 1

a
x3g(x−1)

of g(x) instead of g itself, where g(x) = x3 − tax2 + bx+ a as mentioned
in the introduction. In the same arguments, one can have another corre-
spondence between certain irreducible polynomials in Fq2 [x] and in Fq[x],
of degree 5.
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