DOI QR코드

DOI QR Code

A NEW SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION

  • Lee, S.K. (Department of Mathematics and The Research Institute of Natural Science Gyeongsang National University) ;
  • Khairnar, S.M. (Department of Mathematics Maharashtra Academy of Engineering Alandi)
  • Received : 2011.08.05
  • Accepted : 2011.12.10
  • Published : 2011.12.30

Abstract

In the present paper we introduce a new subclass of analytic functions in the unit disc defined by convolution $(f_{\mu})^{(-1)}*f(z)$; where $$f_{\mu}=(1-{\mu})z_2F_1(a,b;c;z)+{\mu}z(z_2F_1(a,b;c;z))^{\prime}$$. Several interesting properties of the class and integral preserving properties of the subclasses are also considered.

Keywords

References

  1. R.W. Barnard and Ch. Kellogg, Applications of convolution operators to problems in univalent function theory, Michigan Math. J. 27 (1980), no. 1, 81-94. https://doi.org/10.1307/mmj/1029002312
  2. B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745. https://doi.org/10.1137/0515057
  3. N.E. Cho, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 283 (2003), no. 1, 202-212. https://doi.org/10.1016/S0022-247X(03)00270-1
  4. N.E. Cho, Inclusion properties for certain subclasses of analytic functions defined by a linear operator, Abstr. Appl. Anal. Article id. 246876 (2008), 8 pages.
  5. N.E. Cho and T.H. Kim, Multiplier transformations and strongly close-toconvex functions, Bull. Korean Math. Soc. 40 (2003), no. 3, 399-410. https://doi.org/10.4134/BKMS.2003.40.3.399
  6. J.H. Choi, M. Saigo and H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), no. 1, 432-445. https://doi.org/10.1016/S0022-247X(02)00500-0
  7. P. Eenigenburg, S.S. Miller, P.T. Mocanu and M.O. Reade, On a Briot-Bouquet differential subordination in general inequalities, Internat. Schriftenreihe Numer. Math. 64 (1983), 339-348 Birkhauser, Basel, Switzerland. https://doi.org/10.1007/978-3-0348-6290-5_26
  8. R.M. Goel and B.S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math. 12 (1981), no. 5, 634-647.
  9. J.E. Hohlov, Operators and operations on the class of univalent fucntions, Izv. Vyssh. Uchebn. Zaved.i Mat. 197 (1978), no. 10, 83-89.
  10. W. Janowski,, Some external problems for certain families of analytic functions, Bull. Acad. Pol. Sci., Ser. Sci. Phys. Astron 21 (1973), 17-25.
  11. J.A. Kim and K.H. Shon, Mapping properties for convolutions involving hypergeometric functions, Int. J. Math. Math. Sci. 17 (2003), 1083-1091.
  12. J. Liu, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 261 (2001), no. 2, 441-447. https://doi.org/10.1006/jmaa.2001.7489
  13. W. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie Sklodowska. Sect. A 45 (1991), 89-97.
  14. S.S. Miller and P.T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differential Equations 67 (1987), no. 2, 199-211. https://doi.org/10.1016/0022-0396(87)90146-X
  15. K.I. Noor, Integral operators defined by convolution with hypergeometric functions, Appl. Math. Comput. 182 (2006), no. 2, 1872-1881. https://doi.org/10.1016/j.amc.2006.06.023
  16. K.I. Noor, On new classes of integral operators, J. Natur. Geom. 283 (1999), no. 2, 71-80.
  17. K.I. Noor and M.A. Noor, On integral operators, J. Math. Anal. Appl. 283 (1999), no. 2, 341-352.
  18. S. Owa and H.M. Srivastava, Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A 62 (1986), no. 4, 125-128.
  19. K.S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Aust. Math. Soc. 32 (1985), no. 3, 321-330. https://doi.org/10.1017/S0004972700002410
  20. St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), no. 1, 119-135. https://doi.org/10.1007/BF02566116
  21. St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. https://doi.org/10.1090/S0002-9939-1975-0367176-1
  22. N. Shukla and P. Shukla, Mapping properties of analytic function defined by hypergeometric function II, Soochow J. Math. 25 (1999), no. 1, 29-36.

Cited by

  1. New subclasses of analytic functions defined by convolution involving the hypergeometric function and the Owa-Srivastava operator vol.26, pp.3, 2011, https://doi.org/10.1515/gmj-2018-0016
  2. New subclasses of analytic functions defined by convolution involving the hypergeometric function and the Owa-Srivastava operator vol.26, pp.3, 2011, https://doi.org/10.1515/gmj-2018-0016