References
- R.W. Barnard and Ch. Kellogg, Applications of convolution operators to problems in univalent function theory, Michigan Math. J. 27 (1980), no. 1, 81-94. https://doi.org/10.1307/mmj/1029002312
- B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745. https://doi.org/10.1137/0515057
- N.E. Cho, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 283 (2003), no. 1, 202-212. https://doi.org/10.1016/S0022-247X(03)00270-1
- N.E. Cho, Inclusion properties for certain subclasses of analytic functions defined by a linear operator, Abstr. Appl. Anal. Article id. 246876 (2008), 8 pages.
- N.E. Cho and T.H. Kim, Multiplier transformations and strongly close-toconvex functions, Bull. Korean Math. Soc. 40 (2003), no. 3, 399-410. https://doi.org/10.4134/BKMS.2003.40.3.399
- J.H. Choi, M. Saigo and H.M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), no. 1, 432-445. https://doi.org/10.1016/S0022-247X(02)00500-0
- P. Eenigenburg, S.S. Miller, P.T. Mocanu and M.O. Reade, On a Briot-Bouquet differential subordination in general inequalities, Internat. Schriftenreihe Numer. Math. 64 (1983), 339-348 Birkhauser, Basel, Switzerland. https://doi.org/10.1007/978-3-0348-6290-5_26
- R.M. Goel and B.S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math. 12 (1981), no. 5, 634-647.
- J.E. Hohlov, Operators and operations on the class of univalent fucntions, Izv. Vyssh. Uchebn. Zaved.i Mat. 197 (1978), no. 10, 83-89.
- W. Janowski,, Some external problems for certain families of analytic functions, Bull. Acad. Pol. Sci., Ser. Sci. Phys. Astron 21 (1973), 17-25.
- J.A. Kim and K.H. Shon, Mapping properties for convolutions involving hypergeometric functions, Int. J. Math. Math. Sci. 17 (2003), 1083-1091.
- J. Liu, The Noor integral operator and strongly close-to-convex functions, J. Math. Anal. Appl. 261 (2001), no. 2, 441-447. https://doi.org/10.1006/jmaa.2001.7489
- W. Ma and D. Minda, An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie Sklodowska. Sect. A 45 (1991), 89-97.
- S.S. Miller and P.T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differential Equations 67 (1987), no. 2, 199-211. https://doi.org/10.1016/0022-0396(87)90146-X
- K.I. Noor, Integral operators defined by convolution with hypergeometric functions, Appl. Math. Comput. 182 (2006), no. 2, 1872-1881. https://doi.org/10.1016/j.amc.2006.06.023
- K.I. Noor, On new classes of integral operators, J. Natur. Geom. 283 (1999), no. 2, 71-80.
- K.I. Noor and M.A. Noor, On integral operators, J. Math. Anal. Appl. 283 (1999), no. 2, 341-352.
- S. Owa and H.M. Srivastava, Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A 62 (1986), no. 4, 125-128.
- K.S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Aust. Math. Soc. 32 (1985), no. 3, 321-330. https://doi.org/10.1017/S0004972700002410
- St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), no. 1, 119-135. https://doi.org/10.1007/BF02566116
- St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. https://doi.org/10.1090/S0002-9939-1975-0367176-1
- N. Shukla and P. Shukla, Mapping properties of analytic function defined by hypergeometric function II, Soochow J. Math. 25 (1999), no. 1, 29-36.
Cited by
- New subclasses of analytic functions defined by convolution involving the hypergeometric function and the Owa-Srivastava operator vol.26, pp.3, 2011, https://doi.org/10.1515/gmj-2018-0016
- New subclasses of analytic functions defined by convolution involving the hypergeometric function and the Owa-Srivastava operator vol.26, pp.3, 2011, https://doi.org/10.1515/gmj-2018-0016