DOI QR코드

DOI QR Code

A Review of Electrically Tunable Focusing Liquid Crystal Lenses

  • Lin, Hung-Chun (Department of Photonics, National Chiao Tung University) ;
  • Chen, Ming-Syuan (Department of Photonics, National Chiao Tung University) ;
  • Lin, Yi-Hsin (Department of Photonics, National Chiao Tung University)
  • Published : 2011.12.25

Abstract

Electrically tunable focusing liquid crystal (LC) lenses are reviewed in this paper. The distribution of the orientations of LC directors which is controlled by electric fields results in a distribution of refractive indices of LC directors. The incident light can be modulated by the electrically tunable lens-like phase difference of the LC lens. We introduce the basic operating principles of LC lenses and discuss the structures of LC lenses. The major challenges of LC lenses are also discussed. We believe this paper provides a guideline for basic understanding of LC lenses.

Keywords

References

  1. M. Sluijter, A. Herzog, D. K. G. De Boer, M. P. C. M. Krijn, and P. H. Urbach, J. Opt. Soc. Am. B: Opt. Phys. 26, 2035 (2009) [http://dx.doi.org/10.1364/josab.26.002035].
  2. M. Ye, B. Wang, M. Kawamura, and S. Sato, Jpn. J. Appl. Phys. 46, 6776 (2007) [http://dx.doi.org/10.1143/jjap.46.6776].
  3. M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007) [http://dx.doi.org/10.1007/s10043-007-0173-3].
  4. P. Valley, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, Opt. Lett. 35, 2582 (2010) [http://dx.doi.org/10.1364/ol.35.002582].
  5. Y. H. Lin, M. S. Chen, and H. C. Lin, Opt. Express 19, 4714 (2011) [http://dx.doi.org/10.1364/oe.19.004714].
  6. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, Opt. Express 14, 4525 (2006) [http://dx.doi.org/10.1364/oe.14.004525].
  7. M. Kawamura, M. Ye, and S. Sato, Jpn. J. Appl. Phys. 44, 6098 (2005) [http://dx.doi.org/10.1143/jjap.44.6098].
  8. M. Kawamura, M. Ye, and S. Sato, Mol. Cryst. Liq. Cryst. 478, 135 (2007) [http://dx.doi.org/10.1080/15421400701681455].
  9. H. C. Lin and Y. H. Lin, Appl. Phys. Lett. 97, 063505 (2010) [http://dx.doi.org/10.1063/1.3479051].
  10. H. C. Lin and Y. H. Lin, Jpn. J. Appl. Phys. 49, 1025021 (2010) [http://dx.doi.org/10.1143/jjap.49.102502].
  11. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991).
  12. S. Sato, Jpn. J. Appl. Phys. 18, 1679 (1979). https://doi.org/10.1143/JJAP.18.1679
  13. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, Opt. Express 17, 4317 (2009) [http://dx.doi.org/10.1364/oe.17.004317].
  14. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, Opt. Mater. 21, 643 (2003) [http://dx.doi.org/10.1016/s0925-3467(02)00215-x].
  15. Y. J. Liu, X. W. Sun, and Q. Wang, J. Cryst. Growth 288, 192 (2006) [http://dx.doi.org/10.1016/j.jcrysgro.2005.12.025].
  16. H. Ren, Y. H. Fan, and S. T. Wu, Opt. Lett. 29, 1608 (2004) [http://dx.doi.org/10.1364/ol.29.001608].
  17. H. Ren and S. T. Wu, Appl. Opt. 44, 7730 (2005) [http://dx.doi.org/10.1364/ao.44.007730].
  18. H. S. Ji, J. H. Kim, and S. Kumar, Opt. Lett. 28, 1147 (2003) [http://dx.doi.org/10.1364/OL.28.001147].
  19. J. H. Kim and S. Kumar, Jpn. J. Appl. Phys. 43, 7050 (2004) [http://dx.doi.org/10.1143/jjap.43.7050].
  20. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, Appl. Opt. 23, 278 (1984). https://doi.org/10.1364/AO.23.000278
  21. S. Sato, Opt. Rev. 6, 471 (1999). https://doi.org/10.1007/s10043-999-0471-z
  22. M. Ye and S. Sato, Jpn. J. Appl. Phys. 41, L571 (2002) [http://dx.doi.org/10.1143/JJAP.41.L571].
  23. M. Ye and S. Sato, Opt. Commun. 225, 277 (2003) [http://dx.doi.org/10.1016/j.optcom.2003.07.050].
  24. M. Ye, B. Wang, and S. Sato, Appl. Opt. 43, 6407 (2004) [http://dx.doi.org/10.1364/ao.43.006407].
  25. B. Wang, M. Ye, and S. Sato, Jpn. J. Appl. Phys. 44, 4979 (2005) [http://dx.doi.org/10.1143/JJAP.44.4979].
  26. M. Ye, Y. Yokoyama, and S. Sato, Proc. SPIE 5639, 124 (2004) [http://dx.doi.org/10.1117/12.576704].
  27. B. Wang, M. Ye, and S. Sato, IEEE Photonics Technol. Lett. 18, 79 (2006) [http://dx.doi.org/10.1109/LPT.2005.860397].
  28. M. Ye, B. Wang, and S. Sato, IEEE Photonics Technol. Lett. 19, 1295 (2007) [http://dx.doi.org/10.1109/lpt.2007.902290].
  29. M. Ye, B. Wang, M. Yamaguchi, and S. Sato, Jpn. J. Appl. Phys. 47, 4597 (2008) [http://dx.doi.org/10.1143/jjap.47.4597].
  30. M. Ye, B. Wang, and S. Sato, Opt. Express 16, 4302 (2008) [http://dx.doi.org/10.1364/oe.16.004302].
  31. S. Sato, A. Sugiyama, and R. Sato, Jpn. J. Appl. Phys. 24, 626 (1985). https://doi.org/10.1143/JJAP.24.626
  32. Y. H. Fan, H. Ren, and S. T. Wu, Opt. Express 13, 4141 (2005) [http://dx.doi.org/10.1364/opex.13.004141].
  33. B. Wang, M. Ye, and S. Sato, Jpn. J. Appl. Phys. 45, 7813 (2006) [http://dx.doi.org/10.1143/jjap.45.7813].
  34. M. Ye, B. Wang, M. Kawamura, and S. Sato, Electron. Lett 43, 474 (2007) [http://dx.doi.org/10.1049/el:20070138].
  35. B. Wang, M. Ye, and S. Sato, Opt. Commun. 250, 266 (2005) [http://dx.doi.org/10.1016/j.optcom.2005.02.035].
  36. O. Pishnyak, S. Sato, and O. D. Lavrentovich, Appl. Opt. 45, 4576 (2006) [http://dx.doi.org/10.1364/ao.45.004576].
  37. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, Appl. Phys. Lett. 96, 113505 (2010) [http://dx.doi.org/10.1063/1.3360860].
  38. H. C. Lin and Y. H. Lin, Appl. Phys. Lett. 98, 083503 (2011) [http://dx.doi.org/10.1063/1.3559622].
  39. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, Opt. Lett. 23, 992 (1998) [http://dx.doi.org/10.1364/OL.23.000992].
  40. A. F. Naumov, G. D. Love, M. Y. Loktev, and F. L. Vladimirov, Opt. Express 4, 344 (1999). https://doi.org/10.1364/OE.4.000344
  41. G. D. Love and A. F. Naumov, Liq. Cryst. Today 10, 1 (2000) [http://dx.doi.org/10.1080/135831401750061465].
  42. I. P. Gural'nik and S. A. Samagin, Quant. Electron. 33, 430 (2003) [http://dx.doi.org/10.1070/QE2003v033n05ABEH002429].
  43. P. J. W. Hands, A. K. Kirby, and G. D. Love, Proc. SPIE 5518, 136 (2004) [http://dx.doi.org/10.1117/12.562359].
  44. N. Fraval, P. Joffre, S. Formont, and J. Chazelas, Appl. Opt. 48, 5301 (2009) [http://dx.doi.org/10.1364/ao.48.005301].
  45. N. Fraval and J. L. De Bougrenet De La Tocnaye, Appl. Opt. 49, 2778 (2010) [http://dx.doi.org/10.1364/ao.49.002778].
  46. S. P. Kotova, V. V. Patlan, and S. A. Samagin, Quant. Electron. 41, 58 (2011) [http://dx.doi.org/10.1070/QE2011v041n01ABEH014406].
  47. S. P. Kotova, V. V. Patlan, and S. A. Samagin, Quant. Electron. 41, 65 (2011) [http://dx.doi.org/10.1070/QE2011v041n01ABEH014407].
  48. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, Jpn. J. Appl. Phys. 41, L1232 (2002) [http://dx.doi.org/10.1143/JJAP.41.L1232].
  49. H. Ren and S. T. Wu, Opt. Express 14, 11292 (2006) [http://dx.doi.org/10.1364/oe.14.011292].
  50. H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, Appl. Phys. Lett. 84, 4789 (2004) [http://dx.doi.org/10.1063/1.1760226].
  51. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, Opt. Express 15, 11328 (2007) [http://dx.doi.org/10.1364/oe.15.011328].
  52. Y. Li and S. T. Wu, Opt. Express 19, 8045 (2011) [http://dx.doi.org/10.1364/oe.19.008045].
  53. B. Wang, M. Ye, and S. Sato, Appl. Opt. 43, 3420 (2004) [http://dx.doi.org/10.1364/ao.43.003420].
  54. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, Opt. Express 18, 13981 (2010) [http://dx.doi.org/10.1364/oe.18.013981].
  55. V. V. Sergan, T. A. Sergan, and P. J. Bos, Chem. Phys. Lett. 486, 123 (2010) [http://dx.doi.org/10.1016/j.cplett.2010.01.004].
  56. M. Ye, Y. Yokoyama, and S. Sato, Appl. Phys. Lett. 89, 141112 (2006) [http://dx.doi.org/10.1063/1.2358211].
  57. A. Y. G. Fuh, S. W. Ko, S. H. Huang, Y. Y. Chen, and T. H. Lin, Opt. Express 19, 2294 (2011) [http://dx.doi.org/10.1364/oe.19.002294].
  58. M. Honma, T. Nose, S. Yanase, R. Yamaguchi, and S. Sato, Opt. Express 17, 10998 (2009) [http://dx.doi.org/10.1364/oe.17.010998].
  59. M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, J. Appl. Phys. 109, 083109 (2011) [http://dx.doi.org/10.1063/1.3567937].
  60. H. Ren and S. T. Wu, Appl. Phys. Lett. 82, 22 (2003) [http://dx.doi.org/10.1063/1.1534915].
  61. V. V. Presnyakov and T. V. Galstian, J. Appl. Phys. 97, 103101 (2005) [http://dx.doi.org/10.1063/1.1896436].
  62. V. V. Presnyakov, K. E. Asatryan, T. V. Galstian, and A. Tork, Opt. Express 10, 865 (2002). https://doi.org/10.1364/OE.10.000865
  63. H. Ren, Y. H. Fan, and S. T. Wu, J. Phys. D: Appl. Phys. 37, 400 (2004) [http://dx.doi.org/10.1088/0022-3727/37/3/015].
  64. M. S. Millan, J. Oton, and E. Perez-Cabre, Opt. Express 14, 9103 (2006) [http://dx.doi.org/10.1364/oe.14.009103].
  65. N. A. Riza and M. C. DeJule, Opt. Lett. 19, 1013 (1994). https://doi.org/10.1364/OL.19.001013
  66. C. J. Hsu, P. C. P. Chao, and Y. Y. Kao, Microsyst. Technol. 17, 923 (2011) [http://dx.doi.org/10.1007/s00542-010-1187-5].
  67. Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, Opt. Express 18, 18506 (2010) [http://dx.doi.org/10.1364/oe.18.018506].
  68. G. Li, D. L. Mathine, P. Valley, P. Ayras, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, Proc. Natl. Acad. Sci. U. S. A. 103, 6100 (2006) [http://dx.doi.org/10.1073/pnas.0600850103].
  69. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, Opt. Lett. 35, 336 (2010) [http://dx.doi.org/10.1364/ol.35.000336].
  70. G. Li, P. Valley, P.Ayras, D. L. Mathine, S. Honkanen, and N. Peyghambarian, Appl. Phys. Lett. 90, 111105 (2007) [http://dx.doi.org/10.1063/1.2712773].
  71. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, Appl. Phys. Lett. 86, 141110 (2005) [http://dx.doi.org/10.1063/1.1899749].
  72. Y. H. Lin, H. Ren, Y. H. Fan, Y. H. Wu, and S. T. Wu, J. Appl. Phys. 98, 043112 (2005) [http://dx.doi.org/10.1063/1.2037191].
  73. H. Ren, Y. H. Lin, C. H. Wen, and S. T. Wu, Appl. Phys. Lett. 87, 191106 (2005) [http://dx.doi.org/10.1063/1.2126107].
  74. Y. H. Lin, H. Ren, Y. H. Wu, Y. Zhao, J. Fang, Z. Ge, and S. T. Wu, Opt. Express 13, 8746 (2005) [http://dx.doi.org/10.1364/opex.13.008746].
  75. H. Ren, Y. H. Lin, and S. T. Wu, Appl. Phys. Lett. 88, 061123 (2006) [http://dx.doi.org/10.1063/1.2173248].
  76. Y. Huang, C. H. Wen, and S. T. Wu, Appl. Phys. Lett. 89, 021103 (2006) [http://dx.doi.org/10.1063/1.2219998].
  77. S. Y. Huang, T. C. Tung, C. L. Ting, H. C. Jau, M. S. Li, H. K. Hsu, and A. Y. G. Fuh, Applied Physics B: Lasers and Optics 104, 93 (2011) [http://dx.doi.org/10.1007/s00340-011-4498-z].

Cited by

  1. Liquid microlenses and waveguides from bulk nematic birefringent profiles vol.24, pp.19, 2016, https://doi.org/10.1364/OE.24.022177
  2. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications vol.21, pp.8, 2013, https://doi.org/10.1364/OE.21.009428
  3. High-speed dual-layer scanning photoacoustic microscopy using focus tunable lens modulation at resonant frequency vol.25, pp.22, 2017, https://doi.org/10.1364/OE.25.026427
  4. Using an Analytical Model to Design Liquid Crystal Microlenses vol.26, pp.8, 2014, https://doi.org/10.1109/LPT.2014.2306920
  5. Electrically tunable lens speeds up 3D orbital tracking vol.6, pp.6, 2015, https://doi.org/10.1364/BOE.6.002181
  6. Application of a non-hazardous vital dye for cell counting with automated cell counters vol.492, 2016, https://doi.org/10.1016/j.ab.2015.09.010
  7. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell vol.112, pp.2, 2012, https://doi.org/10.1063/1.4737260
  8. Hexagonal liquid crystal lens array for 3D endoscopy vol.23, pp.2, 2015, https://doi.org/10.1364/OE.23.000971
  9. Fast-Response Liquid Crystal Microlens vol.5, pp.4, 2014, https://doi.org/10.3390/mi5020300
  10. A bio-inspired optical system with a polymer membrane and integrated structure vol.11, pp.6, 2016, https://doi.org/10.1088/1748-3190/11/6/066008
  11. Polymer network liquid crystal grating/Fresnel lens fabricated by holography vol.44, pp.5, 2017, https://doi.org/10.1080/02678292.2016.1254295
  12. Consistent neural network empirical physical formula constructions for nonlinear scattering intensities of dye-doped nematic liquid crystals with ultraviolet pump laser-driven Fredericksz threshold shifts vol.158, 2018, https://doi.org/10.1016/j.ijleo.2017.12.093
  13. Tunable liquid crystal microlenses with crater polymer prepared by droplet evaporation vol.21, pp.25, 2013, https://doi.org/10.1364/OE.21.030731
  14. High quality micro liquid crystal phase lenses for full resolution image steering in auto-stereoscopic displays vol.22, pp.18, 2014, https://doi.org/10.1364/OE.22.021679
  15. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes vol.20, pp.3, 2012, https://doi.org/10.1364/OE.20.002045
  16. Polarizer-free imaging of liquid crystal lens vol.22, pp.16, 2014, https://doi.org/10.1364/OE.22.019824
  17. A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes 2017, https://doi.org/10.1080/02678292.2017.1376127
  18. Multi-electrode tunable liquid crystal lenses with one lithography step vol.43, pp.2, 2018, https://doi.org/10.1364/OL.43.000271
  19. Modeling the carbon nanofiber addressed liquid crystal microlens array from experimentally observed optical phenomena vol.316, 2014, https://doi.org/10.1016/j.optcom.2013.09.064
  20. Electrically Tunable Liquid Crystal Lenses and Applications vol.596, pp.1, 2014, https://doi.org/10.1080/15421406.2014.918243
  21. An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses vol.22, pp.10, 2014, https://doi.org/10.1364/OE.22.011427
  22. Simulation Study on Polarization-Independent Microlens Arrays Utilizing Blue Phase Liquid Crystals with Spatially-Distributed Kerr Constants vol.5, pp.4, 2014, https://doi.org/10.3390/mi5040859
  23. P-28: Contrast Enhancement for Imaging System using Electrically Tunable Liquid Crystal Lens vol.46, pp.1, 2015, https://doi.org/10.1002/sdtp.10074
  24. 18-2: Invited Paper : Liquid Crystal Lenses in Augmented Reality vol.48, pp.1, 2017, https://doi.org/10.1002/sdtp.11677
  25. Augmented reality with image registration, vision correction and sunlight readability via liquid crystal devices vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-00492-2
  26. Electrically Tunable Ophthalmic Lenses for Myopia and Presbyopia Using Liquid Crystals vol.596, pp.1, 2014, https://doi.org/10.1080/15421406.2014.918321
  27. Paper No S1.3: Lead Zirconate Titanate-Based Transmissive Liquid Crystal Lens Approach vol.46, pp.S1, 2015, https://doi.org/10.1002/sdtp.10517
  28. Refraction of light on flat boundary of liquid crystals or anisotropic metamaterials vol.5, pp.1, 2017, https://doi.org/10.1080/21680396.2017.1341353
  29. A large bistable negative lens by integrating a polarization switch with a passively anisotropic focusing element vol.22, pp.11, 2014, https://doi.org/10.1364/OE.22.013138
  30. A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure vol.44, pp.4, 2017, https://doi.org/10.1080/02678292.2016.1226973
  31. An Electrically Tunable Polarizer for a Fiber System Based on a Polarization-Dependent Beam Size Derived From a Liquid Crystal Lens vol.6, pp.3, 2014, https://doi.org/10.1109/JPHOT.2014.2319103
  32. Concentrating Photovoltaic System Using a Liquid Crystal Lens vol.24, pp.24, 2012, https://doi.org/10.1109/LPT.2012.2224857
  33. Improvement of performance of liquid crystal microlens with polymer surface modification vol.22, pp.4, 2014, https://doi.org/10.1364/OE.22.004620
  34. A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system vol.113, pp.24, 2013, https://doi.org/10.1063/1.4812391
  35. A Polarizer-Free Liquid Crystal Lens Exploiting an Embedded-Multilayered Structure vol.27, pp.8, 2015, https://doi.org/10.1109/LPT.2015.2399932
  36. Variable focus microlens array with curved electrodes vol.27, pp.5, 2017, https://doi.org/10.1088/1361-6439/aa64ba
  37. A polarized bifocal switch based on liquid crystals operated electrically and optically vol.117, pp.4, 2015, https://doi.org/10.1063/1.4906495
  38. Polymer Network Liquid Crystal (PNLC) Lenticular Microlens Array With No Surface Treatment vol.12, pp.8, 2016, https://doi.org/10.1109/JDT.2016.2527633
  39. An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field vol.21, pp.15, 2013, https://doi.org/10.1364/OE.21.018079
  40. A Pico Projection System With Electrically Tunable Optical Zoom Ratio Adopting Two Liquid Crystal Lenses vol.8, pp.7, 2012, https://doi.org/10.1109/JDT.2012.2185215
  41. Full resolution auto-stereoscopic mobile display based on large scale uniform switchable liquid crystal micro-lens array vol.25, pp.9, 2017, https://doi.org/10.1364/OE.25.009654
  42. 129Xe NMR Investigation of the Anisotropic Environment of a Thermotropic Nematic Liquid Crystal 4-Cyano-4′-Pentylbiphenyl vol.607, pp.1, 2015, https://doi.org/10.1080/15421406.2014.930218
  43. All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface vol.7, pp.3, 2017, https://doi.org/10.1038/lsa.2017.157
  44. Liquid crystal lenses with tunable focal length vol.5, pp.2, 2017, https://doi.org/10.1080/21680396.2018.1440256
  45. Optofluidic Tunable Lenses for In-Plane Light Manipulation vol.9, pp.3, 2018, https://doi.org/10.3390/mi9030097
  46. Polarisation-independent blue-phase liquid crystal microlens array with different dielectric layer pp.1366-5855, 2018, https://doi.org/10.1080/02678292.2018.1550221
  47. A blue-phase liquid crystal lens array based on dual square ring-patterned electrodes pp.1366-5855, 2019, https://doi.org/10.1080/02678292.2018.1549284
  48. Resolving the Vergence Accommodation Conflict in VR and AR via Tunable Liquid Crystal Lenses vol.49, pp.1, 2018, https://doi.org/10.1002/sdtp.12272
  49. Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal vol.8, pp.7, 2018, https://doi.org/10.3390/cryst8070303
  50. Intensity modulation lens on the basis of nano-scale golden rods and liquid crystal layer vol.50, pp.6, 2018, https://doi.org/10.1007/s11082-018-1501-5
  51. Focal stack camera in all-in-focus imaging via an electrically tunable liquid crystal lens doped with multi-walled carbon nanotubes vol.26, pp.10, 2018, https://doi.org/10.1364/OE.26.012441