DOI QR코드

DOI QR Code

Effect of crystallinity on the electrochemical properties of carbon black electrodes

  • Received : 2011.10.10
  • Accepted : 2011.11.25
  • Published : 2011.12.30

Abstract

Carbon-based electric double-layer capacitors are being evaluated as potential energy-storage devices in an expanding number of applications. In this study, samples of carbon black (CB) treated at different temperatures ranging from $650^{\circ}C$ to $1100^{\circ}C$ were used as electrodes to improve the efficiency of a capacitor. The surface properties of the heat-treated CB samples were characterized by X-ray photoelectron spectroscopy and X-ray diffraction. The effect of the heat-treatment temperature on the electrochemical behaviors was investigated by cyclic voltammetry and in galvanostatic charge-discharge experiments. The experimental results showed that the crystallinity of the CBs increased as the heat-treatment temperature increased. In addition, the specific capacitance of the CBs was found to increase with the increase in the heat-treatment temperature. The maximum specific capacitance was 165 $F{\cdot}g-1$ for the CB sample treated at $1000^{\circ}C$.

Keywords

References

  1. Miller JR, Simon P. Materials science: electrochemical capacitors for energy management. Science, 321, 651 (2008). http://dx.doi.org/10.1126/science.1158736.
  2. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater, 4, 366 (2005). http://dx.doi.org/10.1038/nmat1368.
  3. Mohana Reddy AL, Rajalakshmi N, Ramaprabhu S. Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells. Carbon, 46, 2 (2008). http://dx.doi.org/10.1016/j.carbon.2007.10.021.
  4. Xu B, Wu F, Chen S, Zhou Z, Cao G, Yang Y. High-capacitance carbon electrode prepared by PVDC carbonization for aqueous EDLCs. Electrochim Acta, 54, 2185 (2009). http://dx.doi.org/10.1016/j.electacta.2008.10.032.
  5. Balducci A, Dugas R, Taberna PL, Simon P, Plée D, Mastragostino M, Passerini S. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. J Power Sources, 165, 922 (2007). http://dx.doi.org/10.1016/j.jpowsour.2006.12.048.
  6. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL. Anomalous increase in carbon at pore sizes less than 1 nanometer. Science, 313, 1760 (2006). http://dx.doi.org/10.1126/science.1132195.
  7. Seo MK, Park SJ. Influence of air-oxidation on electric double layer capacitances of multi-walled carbon nanotube electrodes. Curr Appl Phys, 10, 241 (2010). http://dx.doi.org/10.1016/j.cap.2009.05.031.
  8. Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sources, 195, 2118 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.09.077.
  9. Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources, 190, 578 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.01.052.
  10. Lin X, Xu Y. Facile synthesis and electrochemical capacitance of composites of polypyrrole/multi-walled carbon nanotubes. Electrochim Acta, 53, 4990 (2008). http://dx.doi.org/10.1016/j.electacta.2008.02.020.
  11. Kim YH, Park SJ. Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes. Curr Appl Phys, 11, 462 (2011). http://dx.doi.org/10.1016/j.cap.2010.08.018.
  12. Li Z, Bao H, Miao X, Chen X. A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties. J Colloid Interface Sci, 357, 286 (2011). http://dx.doi.org/10.1016/j.jcis.2011.02.011.
  13. Gao Y, Chen S, Cao D, Wang G, Yin J. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J Power Sources, 195, 1757 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.09.048.
  14. Patil UM, Gurav KV, Fulari VJ, Lokhande CD, Joo OS. Characterization of honeycomb-like "${\beta}-Ni(OH)2$" thin films synthesized by chemical bath deposition method and their supercapacitor application. J Power Sources, 188, 338 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.11.136.
  15. Pandolfo AG, Hollenkamp AF. Carbon properties and their role in supercapacitors. J Power Sources, 157, 11 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.02.065.
  16. Ruiz B, Parra JB, Alvarez T, Fuertes AB, Pajares JA, Pis JJ. Active carbons from semianthracites. Appl Catal A, 98, 115 (1993). https://doi.org/10.1016/0926-860X(93)80027-N
  17. Pantea D, Darmstadt H, Kaliaguine S, Sümmchen L, Roy C. Electrical conductivity of thermal carbon blacks: influence of surface chemistry. Carbon, 39, 1147 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00239-6.
  18. Seo MK, Park SJ. Electrochemical characteristics of activated carbon nanofiber electrodes for supercapacitors. Mater Sci Eng, B, 164, 106 (2009). http://dx.doi.org/10.1016/j.mseb.2009.08.005.

Cited by

  1. Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers vol.36, pp.3, 2012, https://doi.org/10.7317/pk.2012.36.3.321
  2. Carbon black nanoparticles with a high reversible capacity synthesized by liquid phase plasma process vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1668-8
  3. Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes vol.18, 2016, https://doi.org/10.5714/CL.2016.18.043
  4. The Influence of the Activation Temperature on the Structural Properties of the Activated Carbon Xerogels and Their Electrochemical Performance vol.2017, pp.1687-8442, 2017, https://doi.org/10.1155/2017/8308612
  5. Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends vol.63, pp.8, 2013, https://doi.org/10.1002/pi.4645