DOI QR코드

DOI QR Code

A review: controlled synthesis of vertically aligned carbon nanotubes

  • Hahm, Myung-Gwan (Department of Mechanical Engineering and Materials Science, Rice University) ;
  • Hashim, Daniel P. (Department of Mechanical Engineering and Materials Science, Rice University) ;
  • Vajtai, Robert (Department of Mechanical Engineering and Materials Science, Rice University) ;
  • Ajayan, Pulickel M. (Department of Mechanical Engineering and Materials Science, Rice University)
  • Received : 2011.10.15
  • Accepted : 2011.11.05
  • Published : 2011.12.30

Abstract

Carbon nanotubes (CNTs) have developed into one of the most competitively researched nano-materials of this decade because of their structural uniqueness and excellent physical properties such as nanoscale one dimensionality, high aspect ratio, high mechanical strength, thermal conductivity and excellent electrical conductivity. Mass production and structure control of CNTs are key factors for a feasible CNT industry. Water and ethanol vapor enhance the catalytic activity for massive growth of vertically aligned CNTs. A shower system for gas flow improves the growth of vertically aligned single walled CNTs (SWCNTs) by controlling the gas flow direction. Delivery of gases from the top of the nanotubes enables direct and precise supply of carbon source and water vapor to the catalysts. High quality vertically aligned SWCNTs synthesized using plasma enhance the chemical vapor deposition technique on substrate with suitable metal catalyst particles. This review provides an introduction to the concept of the growth of vertically aligned SWCNTs and covers advanced topics on the controlled synthesis of vertically aligned SWCNTs.

Keywords

References

  1. Falvo MR, Clary GJ, Taylor Ii RM, Chi V, Brooks Jr FP, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature, 389, 582 (1997). http://dx.doi.org/10.1038/39282.
  2. Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of single-wall nanotubes. Appl Phys A: Mater Sci Process, 68, 287 (1999). http://dx.doi.org/10.1007/s003390050890.
  3. Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys, 104, 2089 (1996). http://dx.doi.org/10.1063/1.470966.
  4. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ. Young's modulus of single-walled nanotubes. Phys Rev B, 58, 14013 (1998). http://dx.doi.org/10.1103/PhysRevB.58.14013.
  5. Lourie O, Cox DM, Wagner HD. Buckling and collapse of embedded carbon nanotubes. Phys Rev Lett, 81, 1638 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.1638.
  6. Lu JP. Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett, 79, 1297 (1997). http://dx.doi.org/10.1103/PhysRevLett.79.1297.
  7. Nardelli MB, Yakobson BI, Bernholc J. Brittle and ductile behavior in carbon nanotubes. Phys Rev Lett, 81, 4656 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.4656.
  8. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS. Mechanics of carbon nanotubes. Appl Mech Rev, 55, 495 (2002). http://dx.doi.org/10.1115/1.1490129.
  9. Reich S, Jantoljak H, Thomsen C. Shear strain in carbon nanotubes under hydrostatic pressure. Phys Rev B, 61, R13389 (2000). http://dx.doi.org/10.1103/PhysRevB.61.R13389.
  10. Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon, 33, 925 (1995). http://dx.doi.org/10.1016/0008-6223(95)00021-5.
  11. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L. Elastic and shear moduli of singlewalled carbon nanotube ropes. Phys Rev Lett, 82, 944 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.944.
  12. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678 (1996). http://dx.doi.org/10.1038/381678a0.
  13. Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science, 277, 1971 (1997). http://dx.doi.org/10.1126/science.277.5334.1971.
  14. Yakobson BI, Brabec CJ, Bernholc J. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett, 76, 2511 (1996). http://dx.doi.org/10.1103/PhysRevLett.76.2511.
  15. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637 (2000). http://dx.doi.org/10.1126/science.287.5453.637.
  16. Benedict LX, Louie SG, Cohen ML. Heat capacity of carbon nanotubes. Solid State Commun, 100, 177 (1996). http://dx.doi.org/10.1016/0038-1098(96)00386-9.
  17. Chiu HY, Deshpande VV, Postma HWC, Lau CN, Miko C, Forro L, Bockrath M. Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys Rev Lett, 95, 226101 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.226101.
  18. Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T. Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett, 95, 065502 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.065502.
  19. Heremans J, Beetz Jr CP. Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys Rev B, 32, 1981 (1985). http://dx.doi.org/10.1103/PhysRevB.32.1981.
  20. Hone J. Phonons and thermal properties of carbon nanotubes. In: Dresselhaus M, Dresselhaus G, Avouris P, eds. Carbon Nanotubes. Topics in Applied Physics, Vol. 80, Springer Berlin, Heidelberg, Germany, 273 (2001). http://dx.doi.org/10.1007/3-540-39947-x_11.
  21. Hone J, Llaguno MC, Biercuk MJ, Johnson AT, Batlogg B, Benes Z, Fischer JE. Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A: Mater Sci Process, 74, 339 (2002). http://dx.doi.org/10.1007/s003390201277.
  22. Hone J, Whitney M, Piskoti C, Zettl A. Thermal conductivity of single-walled carbon nanotubes. Phys Rev B, 59, R2514 (1999). http://dx.doi.org/10.1103/PhysRevB.59.R2514.
  23. Huxtable ST, Cahill DG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P. Interfacial heat flow in carbon nanotube suspensions. Nature Mater, 2, 731 (2003). http://dx.doi.org/10.1038/nmat996.
  24. Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett, 87, 215502 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.215502.
  25. Maniwa Y, Fujiwara R, Kira H, Tou H, Kataura H, Suzuki S, Achiba Y, Nishibori E, Takata M, Sakata M, Fujiwara A, Suematsu H. Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies. Phys Rev B, 64, 241402 (2001). http://dx.doi.org/10.1103/PhysRevB.64.241402.
  26. Mingo N, Broido DA. Carbon nanotube ballistic thermal conductance and its limits. Phys Rev Lett, 95, 096105 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.096105.
  27. Pop E, Mann D, Wang Q, Goodson K, Dai H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett, 6, 96 (2006). http://dx.doi.org/10.1021/nl052145f.
  28. Yang DJ, Zhang Q, Chen G, Yoon SF, Ahn J, Wang SG, Zhou Q, Wang Q, Li JQ. Thermal conductivity of multiwalled carbon nanotubes. Phys Rev B, 66, 165440 (2002). http://dx.doi.org/10.1103/PhysRevB.66.165440.
  29. Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nature Nanotechnol, 2, 605 (2007). http://dx.doi.org/10.1038/nnano.2007.300.
  30. Blase X, Benedict LX, Shirley EL, Louie SG. Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett, 72, 1878 (1994). http://dx.doi.org/10.1103/PhysRevLett.72.1878.
  31. Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A, Smalley RE. Single-electron transport in ropes of carbon nanotubes. Science, 275, 1922 (1997). http://dx.doi.org/10.1126/science.275.5308.1922.
  32. Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science, 272, 523 (1996). http://dx.doi.org/10.1126/science.272.5261.523.
  33. Derycke V, Martel R, Appenzeller J, Avouris P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett, 1, 453, (2001). http://dx.doi.org/10.1021/nl015606f.
  34. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature, 382, 54 (1996). http://dx.doi.org/10.1038/382054a0.
  35. Hamada N, Sawada SI, Oshiyama A. New one-dimensional conductors: graphitic microtubules. Phys Rev Lett, 68, 1579 (1992). http://dx.doi.org/10.1103/PhysRevLett.68.1579.
  36. Jishi RA, Dresselhaus MS, Dresselhaus G. Electron-phonon coupling and the electrical conductivity of fullerene nanotubules. Phys Rev B, 48, 11385 (1993). http://dx.doi.org/10.1103/PhysRevB.48.11385.
  37. Lambin P, Fonseca A, Vigneron JP, Nagy JB, Lucas AA. Structural and electronic properties of bent carbon nanotubes. Chem Phys Lett, 245, 85 (1995). http://dx.doi.org/10.1016/0009-2614(95)00961-3.
  38. Mintmire JW, Dunlap BI, White CT. Are fullerene tubules metallic? Phys Rev Lett, 68, 631 (1992). http://dx.doi.org/10.1103/Phys-RevLett.68.631.
  39. Ouyang M, Huang JL, Cheung CL, Lieber CM. Energy gaps in "Metallic" single-walled carbon nanotubes. Science, 292, 702 (2001). http://dx.doi.org/10.1126/science.1058853.
  40. Saito R, Dresselhaus G, Dresselhaus MS. Tunneling conductance of connected carbon nanotubes. Phys Rev B, 53, 2044 (1996). http://dx.doi.org/10.1103/PhysRevB.53.2044.
  41. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic structure of chiral graphene tubules. Appl Phys Lett, 60, 2204 (1992). http://dx.doi.org/10.1063/1.107080.
  42. Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P. Superconductivity in 4 angstrom singlewalled carbon nanotubes. Science, 292, 2462 (2001). http://dx.doi.org/10.1126/science.1060470.
  43. Zhen Y, Postma HWC, Balents L, Dekker C. Carbon nanotube intramolecular junctions. Nature, 402, 273 (1999). http://dx.doi.org/10.1038/46241.
  44. Ajayan PM, Terrones M, De la Guardia A, Huc V, Grobert N, Wei BQ, Lezec H, Ramanath G, Ebbesen TW. Nanotubes in a flash - Ignition and reconstruction. Science, 296, 705 (2002). http://dx.doi.org/10.1126/science.296.5568.705.
  45. Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors. Science, 294, 1317 (2001). http://dx.doi.org/10.1126/science.1065824.
  46. Collins PG, Arnold MS, Avouris P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science, 292, 706 (2001). http://dx.doi.org/10.1126/science.1058782.
  47. Klinke C, Hannon JB, Afzali A, Avouris P. Field-effect transistors assembled from functionalized carbon nanotubes. Nano Lett, 6, 906 (2006). http://dx.doi.org/10.1021/nl052473f.
  48. Koswatta SO, Perebeinos V, Lundstrom MS, Avouris P. Computational study of exciton generation in suspended carbon nanotube transistors. Nano Lett, 8, 1596 (2008). http://dx.doi.org/10.1021/nl0801226.
  49. Lin YM, Appenzeller J, Knoch J, Chen Z, Avouris P. Low-frequency current fluctuations in individual semiconducting singlewall carbon nanotubes. Nano Lett, 6, 930 (2006). http://dx.doi.org/10.1021/nl052528d.
  50. Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49 (1998). http://dx.doi.org/10.1038/29954.
  51. Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes--the route toward applications. Science, 297, 787 (2002). http://dx.doi.org/10.1126/science.1060928.
  52. Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG, Kim JM. Application of carbon nanotubes to field emission displays. Diamond Relat Mater, 10, 265 (2001). http://dx.doi.org/10.1016/s0925-9635(00)00478-7.
  53. Saito Y, Uemura S, Hamaguchi K. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn J Appl Phys, 37, L346 (1998). http://dx.doi.org/10.1143/JJAP.37.L346.
  54. Sugie H, Tanemura M, Filip V, Iwata K, Takahashi K, Okuyama F. Carbon nanotubes as electron source in an x-ray tube. Appl Phys Lett, 78, 2578 (2001). http://dx.doi.org/10.1063/1.1367278.
  55. Yue GZ, Qiu Q, Gao B, Cheng Y, Zhang J, Shimoda H, Chang S, Lu JP, Zhou O. Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based fieldemission cathode. Appl Phys Lett, 81, 355 (2002). http://dx.doi.org/10.1063/1.1492305.
  56. Che G, Lakshmi BB, Fisher ER, Martin CR. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393, 346 (1998). http://dx.doi.org/10.1038/30694.
  57. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS. Vapor-grown carbon fibers (VGCFs)--basic properties and their battery applications. Carbon, 39, 1287 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00295-5.
  58. Gao B, Bower C, Lorentzen JD, Fleming L, Kleinhammes A, Tang XP, McNeil LE, Wu Y, Zhou O. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett, 327, 69 (2000). http://dx.doi.org/10.1016/S0009-2614(00)00851-4.
  59. Meunier V, Kephart J, Roland C, Bernholc J. Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett, 88, 075506 (2002). http://dx.doi.org/10.1103/PhysRevLett.88.075506.
  60. Chopra S, Pham A, Gaillard J, Parker A, Rao AM. Carbon-nanotube-based resonant-circuit sensor for ammonia. Appl Phys Lett, 80, 4632 (2002). http://dx.doi.org/10.1063/1.1486481.
  61. Varghese OK, Kichambre PD, Gong D, Ong KG, Dickey EC, Grimes CA. Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuat B, 81, 32 (2001). http://dx.doi.org/10.1016/s0925-4005(01)00923-6.
  62. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM. Covalently functionalized nanotubes as nanometresized probes in chemistry and biology. Nature, 394, 52 (1998). http://dx.doi.org/10.1038/27873.
  63. Wood JR, Wagner HD. Single-wall carbon nanotubes as molecular pressure sensors. Appl Phys Lett, 76, 2883 (2000). http://dx.doi.org/10.1063/1.126505.
  64. Wood JR, Zhao Q, Frogley MD, Meurs ER, Prins AD, Peijs T, Dunstan DJ, Daniel Wagner H. Carbon nanotubes: from molecular to macroscopic sensors. Phys Rev B, 62, 7571 (2000). http://dx.doi.org/10.1103/PhysRevB.62.7571.
  65. Bunger U, Zittel W. Hydrogen storage in carbon nanostructures-sill a long road from science to commerce? Appl Phys A: Mater Sci Process, 72, 147 (2001). http://dx.doi.org/10.1007/s003390100769.
  66. Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers. J Phys Chem B, 102, 4253 (1998). http://dx.doi.org/10.1021/jp980114l.
  67. Chen P, Wu X, Lin J, Tan KL. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 285, 91 (1999). http://dx.doi.org/10.1126/science.285.5424.91.
  68. Dai GP, Liu C, Liu M, Wang MZ, Cheng HM. Electrochemical hydrogen storage behavior of ropes of aligned single-walled carbon nanotubes. Nano Lett, 2, 503 (2002). http://dx.doi.org/10.1021/nl020290c.
  69. Seung Mi L, Kay Hyeok A, Young Hee L, Seifert G, Frauenheim T. A hydrogen storage mechanism in single-walled carbon nanotubes. J Am Chem Soc, 123, 5059 (2001). http://dx.doi.org/10.1021/ja003751+.
  70. Meregalli V, Parrinello M. Review of theoretical calculations of hydrogen storage in carbon-based materials. Appl Phys A: Mater Sci Process, 72, 143 (2001). http://dx.doi.org/10.1007/s003390100789.
  71. Bajwa N, Li X, Ajayan PM, Vajtai R. Mechanisms for catalytic CVD growth of multiwalled carbon nanotubes. J Nanosci Nanotechnol, 8, 6054 (2008). http://dx.doi.org/10.1166/jnn.2008.SW02.
  72. Halonen N, Kordas K, Toth G, Mustonen T, Maklin J, Vahakangas J, Ajayan PM, Vajtai R. Controlled CCVD synthesis of robust multiwalled carbon nanotube films. J Phys Chem C, 112, 6723 (2008). http://dx.doi.org/10.1021/jp7110617.
  73. Vajtai R, Wei B, George T, Ajayan P. Chemical vapor deposition of organized architectures of carbon nanotubes for applications. In: Mansoori G, George T, Assoufid L, Zhang G, eds. Molecular Building Blocks for Nanotechnology. Topics in Applied Physics, Vol. 109, Springer Berlin, Heidelberg, Germany, 188 (2007). http://dx.doi.org/10.1007/978-0-387-39938-6_9.
  74. Wei BQ, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan PM. Assembly of highly organized carbon nanotube architectures by chemical vapor deposition. Chem Mater, 15, 1598 (2003). http://dx.doi.org/10.1021/cm0202815.
  75. Wei BQ, Ward JW, Vajtai R, Ajayan PM, Ma R, Ramanath G. Simultaneous growth of silicon carbide nanorods and carbon nanotubes by chemical vapor deposition. Chem Phys Lett, 354, 264 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00108-2.
  76. Wei BQ, Vajtai R, Ajayan PM. Sequence growth of carbon fibers and nanotube networks by CVD process [3]. Carbon, 41, 185 (2003). http://dx.doi.org/10.1016/s0008-6223(02)00307-x.
  77. Zhang Z, Wei BQ, Ajayan PM. Self-assembled patterns of iron oxide nanoparticles by hydrothermal chemical-vapor deposition. Appl Phys Lett, 79, 4207 (2001). http://dx.doi.org/10.1063/1.1426256.
  78. Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Ann Rev Mater Res, 33, 419 (2003). http://dx.doi.org/10.1146/annurev.matsci.33.012802.100255.
  79. Dresselhaus MS, Dresselhaus G, Avouris P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Topics in Applied Physics, Vol. 80, Springer, New York (2001).
  80. Ren ZF, Huang ZP. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282, 1105 (1998). http://dx.doi.org/10.1126/science.282.5391.1105.
  81. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 306, 1362 (2004). http://dx.doi.org/10.1126/science.1104962.
  82. Hahm MG, Kwon YK, Lee E, Ahn CW, Jung YJ. Diameter selective growth of vertically aligned single walled carbon nanotubes and study on their growth mechanism. J Phys Chem C, 112, 17143 (2008). http://dx.doi.org/10.1021/jp8073877.
  83. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M. Lowtemperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett, 360, 229 (2002). http://dx.doi.org/10.1016/s0009-2614(02)00838-2.
  84. Jorio A, Dresselhaus G, Dresselhaus MS. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications. Topics in Applied Physics, Vol. 111, Springer, New York (2008).
  85. Yasuda S, Futaba DN, Yamada T, Satou J, Shibuya A, Takai H, Arakawa K, Yumura M, Hata K. Improved and large area singlewalled carbon nanotube forest growth by controlling the gas flow direction. ACS Nano, 3, 4164 (2009). http://dx.doi.org/10.1021/nn9007302.
  86. Noda S, Hasegawa K, Sugime H, Kakehi K, Zhang Z, Maruyama S, Yamaguchi Y. Millimeter-thick single-walled carbon nanotube forests: hidden role of catalyst support. Jpn J Appl Phys, 46, L399 (2007). http://dx.doi.org/10.1143/jjap.46.l399.
  87. Ajayan PM, Lambert JM, Bernier P, Barbedette L, Colliex C, Planeix JM. Growth morphologies during cobalt-catalyzed singleshell carbon nanotube synthesis. Chem Phys Lett, 215, 509 (1993). http://dx.doi.org/10.1016/0009-2614(93)85711-V.
  88. Huang H, Kajiura H, Tsutsui S, Hirano Y, Miyakoshi M, Yamada A, Ata M. Large-scale rooted growth of aligned super bundles of single-walled carbon nanotubes using a directed arc plasma method. Chem Phys Lett, 343, 7 (2001). http://dx.doi.org/10.1016/s0009-2614(01)00631-5.
  89. Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Deniard P, Lee R, Fischer JE. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388, 756 (1997). http://dx.doi.org/10.1038/41972.
  90. Lambert JM, Ajayan PM, Bernier P, Planeix JM, Brotons V, Coq B, Castaing J. Improving conditions towards isolating single-shell carbon nanotubes. Chem Phys Lett, 226, 364 (1994). http://dx.doi.org/10.1016/0009-2614(94)00739-X.
  91. Saito Y, Tani Y, Miyagawa N, Mitsushima K, Kasuya A, Nishina Y. High yield of single-wall carbon nanotubes by arc discharge using Rh-Pt mixed catalysts. Chem Phys Lett, 294, 593 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00921-X.
  92. Subramoney S. Radial single-layer nanotubes. Nature, 366, 637 (1993). http://dx.doi.org/10.1038/366637a0.
  93. Guo T, Nikolaev P, Rinzler AG, Tomanek D, Colbert DT, Smalley RE. Self-assembly of tubular fullerenes. J Phys Chem, 99, 10694 (1995). http://dx.doi.org/10.1021/j100027a002.
  94. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE. Crystalline ropes of metallic carbon nanotubes. Science, 273, 483 (1996). http://dx.doi.org/10.1126/science.273.5274.483.
  95. Chhowalla M, Teo KBK, Ducati C, Rupesinghe NL, Amaratunga GAJ, Ferrari AC, Roy D, Robertson J, Milne WI. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J Appl Phys, 90, 5308 (2001). http://dx.doi.org/10.1063/1.1410322.
  96. Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie JP, Nishi Y, Gibbons J, Dai H. Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc Natl Acad Sci USA, 102, 16141 (2005). http://dx.doi.org/10.1073/pnas.0507064102.
  97. Zhong G, Iwasaki T, Robertson J, Kawarada H. Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J Phys Chem B, 111, 1907 (2007). http://dx.doi.org/10.1021/jp067776s.
  98. Qu L, Du F, Dai L. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett, 8, 2682 (2008). http://dx.doi.org/10.1021/nl800967n.
  99. Iwasaki T, Zhong G, Aikawa T, Yoshida T, Kawarada H. Direct evidence for root growth of vertically aligned single-walled carbon nanotubes by microwave plasma chemical vapor deposition. J Phys Chem B, 109, 19556 (2005). http://dx.doi.org/10.1021/jp054465t.

Cited by

  1. Carbon nanotubes-properties and applications: a review vol.14, pp.3, 2013, https://doi.org/10.5714/CL.2013.14.3.131
  2. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth vol.10, pp.12, 2016, https://doi.org/10.1021/acsnano.6b07251