DOI QR코드

DOI QR Code

Bioavailability of Aspartic Acid Chelated Iron on Iron-deficient Rats

아스파르트산 킬레이트 철분의 철분 결핍쥐에서의 생물학적 유용성

  • Received : 2011.10.28
  • Accepted : 2011.11.23
  • Published : 2011.12.31

Abstract

Aspartic acid chelated iron (Asp-Fe) was synthesized by a new method using calcium carbonate, aspartic acid, and ferrous sulfate. This study was carried out to investigate the bioavailability of Asp-Fe in iron-deficient rats. We divided the rats into four experimental groups. The first was the normal diet control group, or NC. The second was the no treated control group of iron-deficient (ID) rats, or ID+C. The third was the heme-iron (heme-Fe) treated group of ID rats, ID+heme-Fe. And the fourth was the Asp-Fe treated group of ID rats, or ID+Asp-Fe. There were no differences among any of the experimental groups in diet consumption, change of body weight, or the weight of the livers, kidneys, or spleens. After 7 days of feeding, the iron content in the sera of the ID+Asp-Fe group (175.2 ${\mu}g$/dL) and the ID+heme-Fe group (140.8 ${\mu}g$/dL) were significantly higher than that of the ID-C group (96.1 ${\mu}g$/dL). The total iron binding capacity (TIBC) of the ID+Asp-Fe group (735.4 ${\mu}g$/dL) was significantly normalized compared to the ID+C group (841.9 ${\mu}g$/dL) or ID+heme-Fe group (824.6 ${\mu}g$/dL). The hematocrit level of the ID+Asp-Fe group was increased to normal levels, but there was no statistical difference among ID groups. The absorption ratio of heme-Fe was 21.3% and that of Asp-Fe was 50.2%, which indicates a 2.3 times higher ratio in comparison with heme iron. With the above results we found that Asp-Fe seems to be an efficient form of iron to supply iron deficient rats in order to cure them of anemia. Thus, these findings suggest that aspartic acid chelated iron has the potential to serve as a functional food related to iron metabolism.

본 연구에서는 아스파르트산, 탄산칼슘 및 황산철을 반응시켜 아스파르트산 킬레이트 철분(aspartic acid chelated iron, Asp-Fe)을 제조하고 Asp-Fe의 철분결핍 쥐(iron-deficient rat, ID)에서의 생물학적 유용성을 확인하였다. 시험군은 철분이 함유된 식이를 섭취한 정상군(NC), 철분 결핍식이를 1개월간 투여하여 철분 결핍 상태를 유도한 쥐(ID)에 생리식염수를 공급한 결핍 대조군(ID+C), 철분 결핍 쥐에 햄철(heme-Fe) 투여군(ID+heme-Fe) 및 Asp-Fe 투여군(ID+Asp-Fe)으로 나누어 실시하였다. 그 결과 식이섭취량, 장기무게, 체중증가 정도에서 각 군에 따른 차이가 없는 것으로 나타났다. 7일간 투여 후 혈액 중 철분의 함량을 측정한 결과 결핍쥐에 Asp-Fe 투여군(175.2 ${\mu}g$/dL)과 heme-Fe 투여군(140.8 ${\mu}g$/dL)은 결핍 대조군(96.1 ${\mu}g$/dL)보다 유의적인 수준으로 증가하였다. 총 철분 결합능(total iron binding capacity, TIBC)를 측정한 결과 Asp-Fe 투여군(735.4 ${\mu}g$/dL)은 결핍 대조군(841.9 ${\mu}g$/dL)보다 유의적 수준으로 정상화되었다. 헤마토크리트(HCT) 수치를 측정한 결과에서 Asp-Fe 및 heme-Fe 모두 결핍 대조군보다 증가하는 경향은 보였지만 유의적인 차이는 없었다. 흡수율에서는 heme-Fe의 경우 21.3%인 반면에 Asp-Fe의 경우 50.2%로 약 2.3배 높은 것으로 나타났으며, 혈청에서의 철분농도 및 transferrin saturation(TS)는 heme-Fe 투여군 및 결핍 대조군에 비하여 Asp-Fe 투여군이 유의하게 높은 수준을 유지하였다. 이상의 결과로 미루어 볼 때 아미노산 킬레이트 철분은 heme-Fe과 유사한 수준의 생체 이용율을 가지고 있으며, 철분 결핍을 회복시키는데 매우 효과적인 보충제로서 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Charlton RW, Bothwell TH. 1982. Definition, prevalence and prevention of iron deficiency. Clin Haematol 11: 309-325.
  2. Finch CA, Huebers H. 1982. Perspectives in iron metabolism. N Engl J Med 306: 1520-1528. https://doi.org/10.1056/NEJM198206243062504
  3. Lieu PT, Heiskala M, Peterson PA, Yang Y. 2001. The roles of iron in health and disease. Mol Aspects Med 22: 1-87. https://doi.org/10.1016/S0098-2997(00)00006-6
  4. Cairo G, Bernuzzi F, Recalcati S. 2006. A precious metal: Iron, an essential nutrient for all cells. Genes & Nutrition 1: 25-39. https://doi.org/10.1007/BF02829934
  5. Beard JL. 2001. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131: 568S-580S. https://doi.org/10.1093/jn/131.2.568S
  6. Fritz JC, Pla GW, Roberts T, Boehne JW, Hove EL. 1970. Biological availability in animals of iron from common dietary sources. J Agric Food Chem 18: 647-651. https://doi.org/10.1021/jf60170a031
  7. Monsen ER. 1988. Iron nutrition and absorption-Dietary factors which impact iron bioavailability. J Am Diet Assoc 88: 786-790.
  8. Osterloh KRS, Simpson RJ, Snape S, Peters TJ. 1987. Intestinal iron-absorption and mucosal transferrin in rats subjected to hypoxia. Blut 55: 421-431. https://doi.org/10.1007/BF00367458
  9. Mackenzie B, Garrick MD. 2005. Iron imports. II. Iron uptake at the apical membrane in the intestine. Am J Physiol Gastrointest Liver Physiol 289: G981-G986. https://doi.org/10.1152/ajpgi.00363.2005
  10. Kim YJ. 1999. Iron bioavailability in iron-fortified market milk. J Korean Soc Food Sci Nutr 28: 705-709.
  11. Lebrun F, Bazus A, Dhulster P, Guillochon D. 1998. Solubility of heme in heme-iron enriched bovine hemoglobin hydrolysates. J Agric Food Chem 46: 5017-5025. https://doi.org/10.1021/jf9805698
  12. The Korean Nutrition Society. 2010. Dietary reference intakes for Koreans. 8th rev. The Korean Nutrition Society, Seoul, Korea. p 409.
  13. Quintero-Gutierrez AG, González-Rosendo G, Sanchez-Munoz J, Polo-Pozo J, Rodríguez-Jerez JJ. 2008. Bioavailability of heme iron in biscuit filling using piglets as an animal model for humans. Int J Biol Sci 4: 58-62.
  14. Tako E, Rutzke MA, Glahn RP. 2010. Using the domestic chicken (Gallus gallus) as an in vivo model for iron bioavailability. Poult Sci 89: 514-521. https://doi.org/10.3382/ps.2009-00326
  15. Chen OS, Blemings KP, Schalinske KL, Eisenstein RS. 1998. Dietary iron intake rapidly influences iron regulatory proteins, ferritin subunits and mitochondrial aconitase in rat liver. J Nutr 128: 525-535. https://doi.org/10.1093/jn/128.3.525
  16. Kasvosve I, Delanghe J. 2002. Total iron binding capacity and transferrin concentration in the assessment of iron status. Clin Chem Lab Med 40: 1014-1018. https://doi.org/10.1515/CCLM.2002.176
  17. Gottschalk R, Wigand R, Dietrich CF, Oremek G, Liebisch F, Hoelzer D, Kaltwasser JP. 2000. Total iron-binding capacity and serum transferrin determination under the influence of several clinical conditions. Clin Chim Acta 293: 127-138. https://doi.org/10.1016/S0009-8981(99)00242-9
  18. Malin MJ, Mihalik MC, Sclafani L. 1983. Determination of hematocrit based on diffusion of an inert molecular probe from agarose gels into whole blood. Anal Biochem 129: 434-445. https://doi.org/10.1016/0003-2697(83)90574-2
  19. Miret S, Simpson RJ, McKie AT. 2003. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr 23: 283-301. https://doi.org/10.1146/annurev.nutr.23.011702.073139
  20. Olivares M, Pizarro F, Pineda O, Name JJ, Hertrampf E, Walter T. 1997. Milk inhibits and ascorbic acid favors ferrous bis-glycine chelate bioavailability in humans. J Nutr 127: 1407-1411. https://doi.org/10.1093/jn/127.7.1407
  21. Layrisse M, Garcia-Casal MN, Solano L, Baron MA, Arguello F, Llovera D, Ramirez J, Leets I, Tropper E. 2000. Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. J Nutr 130: 2195-2199. https://doi.org/10.1093/jn/130.9.2195