DOI QR코드

DOI QR Code

Anti-obesity Effect of Hypsizigus marmoreus in High Fat-fed Mice

고지방식이를 섭취한 마우스에서 느티만가닥버섯의 항비만 효과

  • Ryu, Hae-Jeong (Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Um, Min-Young (Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Ahn, Ji-Yun (Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Jung, Chang-Hwa (Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Huh, Dam (Dongwoodang Pharmacy Co. Ltd.) ;
  • Kim, Tae-Wan (Dept. of Food Science and Biotechnology, Andong National University) ;
  • Ha, Tae-Youl (Division of Metabolism and Functionality Research, Korea Food Research Institute)
  • 류해정 (한국식품연구원 대사기능연구본부) ;
  • 엄민영 (한국식품연구원 대사기능연구본부) ;
  • 안지윤 (한국식품연구원 대사기능연구본부) ;
  • 정창화 (한국식품연구원 대사기능연구본부) ;
  • 허담 (동우당제약(주)) ;
  • 김태완 (안동대학교 식품공학과) ;
  • 하태열 (한국식품연구원 대사기능연구본부)
  • Received : 2011.09.20
  • Accepted : 2011.12.08
  • Published : 2011.12.31

Abstract

This study investigated the possible anti-obesity effects of Hypsizigus marmoreus on high fat-fed mice. Thirty male C57BL/6 mice were randomly divided into 3 groups: a normal diet group (N), a high-fat diet group (HF), and a high-fat diet with 5% Hypsizigus marmoreus group (HF-H). After 8 weeks, the body weights in the HF group significantly increased, while those of the HF-H group decreased. Also, liver and adipose tissue weights in the HF-H group significantly decreased. Total serum cholesterol, leptin, and insulin levels were significantly higher in the HF group than those of the N group, but lower than those of the HF-H group. Accumulation of hepatic lipids was apparent in the HF group, as indicated by HE staining and hepatic lipid analysis, while these effects were improved by supplements with Hypsizigus marmoreus in the HF-H group. Also, a reduction in adipocyte size of the epididymal adipose tissue was observed in the HF-H group. $PPAR{\gamma}$, SREBP-1c, and SCD-1 protein expressions were down-regulated in the epididymal adipose tissue of the HF-F group compared to the HF group. Taken together, these results suggest that Hypsizigus marmoreus may an effective anti-obesity treatment.

본 연구는 느티만가닥버섯의 항비만 효과를 알아보기 위해 4주령된 C57BL/6 수컷 쥐를 30마리를 1주일간 적응시킨 후, 정상식이군, 고지방식이군, 5% 느티만가닥버섯 분말 첨가 식이군으로 나누어 8주간 실시하였다. 체중 및 체중증가량은 고지방식이군에서 유의적으로 증가하였으며, 느티만 가닥버섯 분말 첨가 식이군에서 감소하였다. 간 및 지방조직의 무게도 고지방식이군에 비하여 느티만가닥버섯 처리군에서 낮았다. 고지방 식이에 의한 혈청 중 총콜레스테롤, 인슐린 및 렙틴 수준 증가는 느티만가닥버섯 분말 섭취로 인하여 낮아졌다. 또한, 간 중 지질 함량도 느티만가닥버섯 분말 첨가군에서 감소하였다. HE staining으로 관찰한 간내 지방축적과 지방세포의 크기도 느티만가닥버섯 분말 첨가 식이군에서 현저히 감소하였다. 부고환 지방조직에서 관찰한 지방생성 관련 유전자인 $PPAR{\gamma}$, SREBP-1c, SCD-1의 단백질 발현은 고지방식이군과 비교 시, 느티만가닥버섯 분말첨가 식이군에서 억제되었다. 이상의 실험결과, 고지방 식이와 함께 공급한 느티만가닥버섯 분말은 체중 감소 및 체지방 축적 억제와 더불어 혈청 지방 수준 개선에도 긍정적 영향을 미치는 것으로 나타났다.

Keywords

References

  1. Albu J, Allison D, Boozer CN, Heymsfield S, Kissileff H, Kretser A, Krumhar K, Leibel R, Nonas C, Pi-Sunyer X, VanItallie T, Wedral E. 1997. Obesity solutions: report of a meeting. Nutr Rev 55: 150-156.
  2. Aggoun Y. 2007. Obesity, metabolic syndrome, and cardiovascular disease. Pediatr Res 61: 653-659. https://doi.org/10.1203/pdr.0b013e31805d8a8c
  3. Ministry of Health and Social Affairs. 2009. 2009 National health and nutrition survey. Ministry of Health and Welfare, Seoul, Korea. p 48-49.
  4. Ryu JM, Lee TH, Seo IK, Lee SH, Chang YH, Kim YB, Hwang SY. 2006. Anti-obesity effects of Misaengtang in rats fed on a high-fat diet or normal diets. J Toxicol Pub Health 22: 339-348.
  5. Chang ST, Buswell JA. 1996. Mushroom nutriceuticals. World J Microbiol Biotechnol 12: 473-476. https://doi.org/10.1007/BF00419460
  6. Kim HS, Ha HC, Kim TS. 2003. Research and prospects in new functional mushrooms-Tremella fuciformis, Grifora frondosa and Hypsizigus marmoreus. Food Sci Ind 36: 42-46.
  7. Park WH, Lee HD. 1999. An illustrated guide to Korea medicinal mushrooms. Kyohak publishing Co., Seoul, Korea. p 171.
  8. Ikekawa T, Saitoh H, Feng W, Zhang H, Li L, Matsuzawa T. 1992. Antitumor activity of Hypsizigus marmoreus. I. antitumor activity of extracts and polysaccharides. Chem Pharm Bull 40: 1954-1957. https://doi.org/10.1248/cpb.40.1954
  9. Lim YJ, Lee CY, Park JE, Kim SW, Lee HS, Ro HS. 2010. Molecular genetic classification of Hypsizigus marmoreus and development of strain-specific DNA markers. Kor J Mycol 38: 34-39. https://doi.org/10.4489/KJM.2010.38.1.034
  10. Jung EB, Jo JH, Cho SM. 2008. Nutritional component and anticancer properties of various extracts from haesongi mushroom (Hypsizigus marmoreus). J Korean Soc Food Sci Nutr 37: 1395-1400. https://doi.org/10.3746/jkfn.2008.37.11.1395
  11. Jung EB, Jo JH, Cho SM. 2009. Hypoglycemic and angiotension converting enzyme inhibitory effect of water and ethanol extracts from Haesongi mushroom (Hypsizigous marmoreus). Food Sci Biotechnol 18: 541-545.
  12. Jung EB, Jo JH, Cho SM. 2008. Cytotoxic effect of isolated protein-bound polysaccharides from Hypsizigus marmoreus extracts by response surface methodology. J Korean Soc Food Sci Nutr 37: 1535-1687. https://doi.org/10.3746/jkfn.2008.37.12.1647
  13. Xu XM, Jun JY, Jeong IH. 2007. A Study on the antioxidant activity of hae-songi mushroom (Hypsizigus marmoreus) hot water extracts. J Korean Soc Food Sci Nutr 36: 1351-1491. https://doi.org/10.3746/jkfn.2007.36.11.1351
  14. Ohtsuki M, Umeshita K, Kokean Y, Nishii T, Sakakura H, Yanagita T, Hisamatsu M, Furuichi Y. 2007. Suppressive effects of bunashimeji (Hypsizigus marmoreus) on triacylglycerol accumulation in C57BL/6J mice. Nippon Shokuhin Kagaku Kogaku Kaishi 54: 167-172. https://doi.org/10.3136/nskkk.54.167
  15. Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M. 2008. Antiatherosclerotic effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa (Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein E-deficient mice. Nutr Res 28: 335-342. https://doi.org/10.1016/j.nutres.2008.03.010
  16. Folch J, Lees M, Sloane SGH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  17. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7: 248-254.
  18. Dodge JA. 1994. Dietary fat and gastrointestinal function. Eur J Cin Nutr 48: S8-S16.
  19. Zhang XH, Choi SK, Seo JS. 2010. Effect of dietary grape pomace on lipid metabolism and hepatic morphology in rats fed a high fat diet. J Korean Soc Food Sci Nutr 39: 1595-1603. https://doi.org/10.3746/jkfn.2010.39.11.1595
  20. Lee JJ, Park MR, Kim AR, Lee MY. 2011. Effects of ramie leaves on improvement of lipid metabolism and anti-obesity effect in rats red a high fat/high cholesterol diet. Korean J Food Sci Technol 43: 83-90. https://doi.org/10.9721/KJFST.2011.43.1.083
  21. Bjorntorp P. 1990. "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Atherosclerosis 10: 493-496.
  22. Avram AS, Avram MN, James WD. 2005. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53: 671-683. https://doi.org/10.1016/j.jaad.2005.05.015
  23. Moon JH, Sung JH, Choi IW, Kim YS. 2010. Anti-obesity and hypolipidemic activity of Taro powder in mice fed with high fat and cholesterol diets. Korean J Food Sci Technol 42: 620-626.
  24. So M, Gaidhu MP, Maghdoori B, Ceddia RB. 2011. Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats. Lipids Health Dis 10: 1-12. https://doi.org/10.1186/1476-511X-10-1
  25. Llado I, Pons A, Palou A. 1997. Fatty acid composition of brown adipose tissue in dietary obese rats. Biochem Mol Biol Int 43: 1129-1136.
  26. Hu SH, Liang ZC, Chia YC, Lien JL, Chen KS, Lee MY, Wang JC. 2006. Antihyperlipidemic and antioxidant effects of extracts from Pleurotus citrinopileatus. J Agric Food Chem 54: 2103-2110. https://doi.org/10.1021/jf052890d
  27. Peter CKC. 1996. The hypocholesterolemic effect of extracellular polysaccharide from the submerged fermentation of mushroom. Nutr Res 16: 1953-1957. https://doi.org/10.1016/S0271-5317(96)00218-7
  28. Bonini JA, Colca JR, Dailey C, White M, Hofmann C. 1995. Compensatory alterations for insulin signal transduction and glucose transport in insulin-resistant diabetes. Am J Physiol 269: 759-765.
  29. Friedman JM, Halaas JL. 1998. Leptin and the regulation of body weight in mammals. Nature 395: 763-770. https://doi.org/10.1038/27376
  30. Galic S, Oakhill JS, Steinberg GR. 2010. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316: 129-139. https://doi.org/10.1016/j.mce.2009.08.018
  31. Fasshauer M, Paschke R. 2003. Regulation of adipokines and insulin resistance. Diabetologia 46: 1594-1603. https://doi.org/10.1007/s00125-003-1228-z
  32. Kim MA, Jeong YS, Chun GT, Cha YS. 2009. Antihyperlipidemic and glycemic control effects of mycelia of Inonotus obliquus including protein-bound polysaccharides extract in C57BL/6J mice. J Korean Soc Food Sci Nutr 38: 667-673. https://doi.org/10.3746/jkfn.2009.38.6.667
  33. Koh JB, Lee CU. 2005. Effects of pleurotus eryngii on lipid metabolism in rats fed high fat diet. J Korean Soc Food Sci Nutr 34: 626-631. https://doi.org/10.3746/jkfn.2005.34.5.626
  34. Gervois P, Torra IP, Fruchart JC, Staels B. 2000. Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chem Lab Med 38: 3-11. https://doi.org/10.1515/CCLM.2000.002
  35. Foretz M, Guichard C, Ferré P, Foufelle F. 1999. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci 96: 12737-12742. https://doi.org/10.1073/pnas.96.22.12737
  36. Morrison CD, Huypens P, Stewart LK, Gettys TW. 2009. Implications of crosstalk between leptin and insulin signaling during the development of diet-induced obesity. Biochim Biophys Acta 1792: 409-416. https://doi.org/10.1016/j.bbadis.2008.09.005
  37. Soukas A, Cohen P, Socci ND, Friedman JM. 2000. Leptinspecific patterns of gene expression in white adipose tissue. Genes Dev 14: 963-980.
  38. Joo JI, Kim DH, Yun JW. 2010. Extract of chaga mushroom (Inonotus obliquus) stimulates 3t3-l1 adipocyte differentiation. Phytoter Res 24: 1592-1599. https://doi.org/10.1002/ptr.3180
  39. Jeong HJ, Yoon SJ, Pyun YR. 2008. Polysaccharides from edible mushroom hinmogi (Tremella fuciformis) inhibit differentiation of 3T3-L1 adipocytes by reducing mRNA expression of PPAR$\gamma$, C/EBP$\alpha$, and leptin. Food Sci Biotechnol 17: 267-273.

Cited by

  1. Influence of Galgeun-tang on Gene Expression in Diet-Induced Obese Mice vol.26, pp.2, 2016, https://doi.org/10.18325/jkmr.2016.26.2.1
  2. Effects of ethanolic extract of Ulmus davidiana Root on Lipid Metabolism in High-Fat Diet Fed Mice vol.26, pp.1, 2013, https://doi.org/10.9799/ksfan.2013.26.1.008
  3. Anti-obesity Effects of Peucedanum japonicum Thunberg L. on 3T3-L1 Cells and High-fat Diet-induced Obese Mice vol.29, pp.1, 2016, https://doi.org/10.7732/kjpr.2016.29.1.001
  4. 고지방 식이로 유도된 비만 생쥐에서 쑥부쟁이 에탄올 추출물의 항비만 효과 vol.31, pp.6, 2011, https://doi.org/10.15188/kjopp.2017.12.31.6.348
  5. 추출용매에 따른 영지버섯(Ganoderma lucidum)의 항산화 및 소화효소 저해활성 vol.25, pp.1, 2011, https://doi.org/10.11002/kjfp.2018.25.1.124
  6. Platycodon grandiflorum Extract Reduces High-Fat Diet-Induced Obesity Through Regulation of Adipogenesis and Lipogenesis Pathways in Mice vol.22, pp.10, 2011, https://doi.org/10.1089/jmf.2018.4370
  7. Effects of Ethanol Extracts from Grateloupia elliptica, a Red Seaweed, and Its Chlorophyll Derivative on 3T3-L1 Adipocytes: Suppression of Lipid Accumulation through Downregulation of Adipogenic Prote vol.19, pp.2, 2021, https://doi.org/10.3390/md19020091
  8. Lactobacillus fermentum SMFM2017-NK4 Isolated from Kimchi Can Prevent Obesity by Inhibiting Fat Accumulation vol.10, pp.4, 2021, https://doi.org/10.3390/foods10040772
  9. Assessment the of Anti-Obesity Effects and Safety of Lactobacillus paracasei AO356 vol.50, pp.9, 2011, https://doi.org/10.3746/jkfn.2021.50.9.904
  10. Anti-Obesity Effect of Soybean Fermented with Monascus in High-Fat Diet Induced Obese Mice Model vol.31, pp.5, 2021, https://doi.org/10.17495/easdl.2021.10.31.5.333