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THE LIMITING BEHAVIORS OF LINEAR RANDOM

FIELDS GENERATED BY LNQD RANDOM

VARIABLES ON Z2

Mi-Hwa Ko

Abstract. In this paper we establish the central limit theorem and
the strong law of large numbers for linear random fields generated
by identically distributed linear negative quadrant dependent ran-
dom variables on Z2.

1. Introduction

Let Zd+, where d is a positive integer, denote the positive integer d-
dimensional lattice points. The notation m ≤ n, where m = (m1,m2

, · · · ,md) and n = (n1, n2, · · · , nd) in Zd+, means that mi ≤ ni for all
1 ≤ i ≤ d.

Two random variables X and Y are said to be negatively quad-
rant dependent(NQD)[resp. positively quadrant dependent(PQD)] if
P (X ≤ x, Y ≤ y)− P (X ≤ x)P (Y ≤ y) ≤ 0 [resp. ≥ 0] for all x, y ∈ R.
A random field {ξk,k ∈ Zd+} is said to be associated if for any increasing

functions f, g and any finite subset A ⊂ Zd+, Cov(f(ξi, i ∈ A), g(ξi, i ∈
A)) ≥ 0 and {ξk,k ∈ Zd+} is said to be negatively associated(NA) if

any increasing functions f, g and any disjoint finite subsets A,B ⊂ Zd+,
Cov(f(ξi, i ∈ A), g(ξj, j ∈ B)) ≤ 0. The definitions of PQD and NQD
are given by Lehmann (1966) and the concepts of association and neg-
ative association are given by Esary, Proschan and Walkup (1967) and
Joag-Dev and Proschan(1983), respectively. Because of their wide ap-
plications in multivariate statistical analysis and reliability theory the
notions of dependence have received more and more attention recently.
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A random field {ξk,k ∈ Zd+} is said to be linearly negative quadrant
dependent(LNQD)[resp.linearly positive quadrant dependent(LPQD)] if
for any disjoint finite subsets A,B ⊂ Zd+ and any positive real numbers
ri, rj,

∑
i∈A riξi and

∑
j∈B rjξj are NQD[resp. PQD]. This definition is

introduced by Newman(1984). Since LNQD is much weaker than NA,
studying the limit theorems for LNQD random fields is of interest. New-
man(1980) proved the central limit theorem for a stationary associated
random field and explained the possibility of the central limit theorem
for LPQD random field and Matula(1992) showed the strong law of large
numbers for a pairwise NQD random field which is weaker than LNQD
random fields.

The following theorem is the well known central limit theorem for
LNQD random field obtained by similar method to Newman’s(1980)
central limit theorem for LPQD random field.
Theorem 1.1(Newman(1980)) Let {ξt, t ∈ Zd} be a field of station-
ary linear negative quadrant dependent random variables with Eξt = 0
and Eξ2

t <∞. Assume that

σ2 =
∑
t∈Zd

Cov(ξ0, ξt) <∞.

Then

(1.1)
1

σ
√
|n|

Sn → N(0, 1),

where Sn =
∑

1≤i≤n ξi.

Theorem 1.2(Matula(1992)) Let {ξt, t ∈ Zd} be a field of centered
and identically distributed NQD random variables. Then, E|ξ1|(log+ |ξ1|)d−1

< ∞ implies |n|−1
∑

1≤t≤n ξt → 0 a.s. as n → ∞, where log+ x =

max{1, log x}.
Define a linear random field

(1.2) X(t) =
∑
k≥0

a(k)ξ(t− k)

=

∞∑
k1=0

· · ·
∞∑

kd=0

a(k1, · · · , kd)ξ(t1 − k1, · · · , td − kd),

where the coefficients {a(k),k ∈ Zd} and the random variables {ξ(t), t ∈
Zd} are such that the linear random field {X(t), t ∈ Zd} is well defined
and stationary.
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Marinucci and Poghosyan(2001) proved the invariance principle and
the strong convergence for linear random fields generated by independent
and identically distributed random fields and Kim et al.(2008) investi-
gated the invariance principle for the linear random field with associ-
ated random field. Paulauskas (2010) showed that an analogue of the
Beveridge-Nelson decomposition can be applied to limit theorems for
sums of linear random fields and Banys, Davydov and Paulauskas(2010)
proved a strong law of large numbers for linear random field generated
by a strictly stationary centered ergodic random field. Ko(2011) also
proved a strong law of large numbers for linear random field generated
by NA random field.

In this paper we prove the central limit theorem and the strong law
of large numbers for the linear random field generated by centered and
identically distributed LNQD random fields on Z2 by using the so-called
Beveridge-Nelson decomposition. As an example we also give a Doubly
Geometric Spatial Autoregressive Model.

2. Decomposition of bivariate polynomials

Define a linear random field (two parameter stochastic process) on
Z2 by

(2.1) X(t1, t2) =
∞∑
i1=0

∞∑
i2=0

a(i1, i2)ξ(t1 − i1, t2 − i2), (t1, t2) ∈ Z2,

where {ξ(t1, t2)} is a 2-parameter array of identically distributed random
variables with Eξ(t1, t2) = 0 and E(ξ(t1, t2))2 <∞ and {a(i1, i2)} is an
array of real numbers such that

(2.2) a(i1, i2) ≥ 0 for all (i1, i2), i1, i2 ∈ N ∪ {0}.

To consider the decomposition of bivariate polynomials (see Marin-
ucci and Poghsyan (2001)) put

(2.3) A(x1, x2) =
∞∑
i1=0

∞∑
i2=0

a(i1, i2)xi11 x
i2
2 , (x1, x2) ∈ R2,

where |xi| ≤ 1, i = 1, 2, and

(2.4)
∞∑
i1=0

∞∑
i2=0

∞∑
k1=i1+1

∞∑
k2=i2+1

a(k1, k2) <∞.
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Note that (2.4) implies

A(1, 1) =
∞∑
i1=0

∞∑
i2=0

a(i1, i2) <∞.

The following lemma extends a result known for d = 1 as the Beveridge-
Nelson decomposition(cf.Phillips and Solo(1992)) to the case d = 2.

Lemma 2.1(Marinucci and Poghosyan(2001)) Let Γ be the class
of all subsets γ of {1, 2}. Let yj = xj if j ∈ γ and yj = 1 if j /∈ γ. Then
we have

A(x1, x2) =
∑
γ∈Γ

{Πj∈γ(xj − 1)}Aγ(y1, y2),

where Πj∈φ = 1, and

(2.5) Aγ(y1, y2) =
∞∑
i1=0

∞∑
i2=0

aγ(i1, i2)yi11 y
i2
2 ,

(2.6) aγ(i1, i2) =
∞∑

s1=i1+1

∞∑
s2=i2+1

a(s1, s2),

where the sum is taken over (s1, s2) such that sj ≥ ij + 1, if j ∈ γ and
sj = ij otherwise.

It follows from (2.3), (2.5) and (2.6) that AØ(1, 1) = A(1, 1).
Let A{1} = A1, A{2} = A2, and A{1,2} = A12.
In other words, we have

A(x1, x2) = A(1, x2) + (x1 − 1)A1(x1, x2),

A(1, x2) = A(1, 1) + (x2 − 1)A2(1, x2),

A1(x1, x2) = A1(x1, 1) + (x2 − 1)A12(x1, x2),

where

A1(x1, x2) =

∞∑
i1=0

∞∑
i2=0

∞∑
k1=i1+1

a(k1, i2)xi11 x
i2
2 ,

A12(x1, x2) =

∞∑
i1=0

∞∑
i2=0

∞∑
k1=i1+1

∞∑
k2=i2+1

a(k1, k2)xi11 x
i2
2 ,

hence

A(x1, x2) = A(1, 1) + (x1 − 1)A1(x1, 1) + (x2 − 1)A2(1, x2)

+(x1 − 1)(x2 − 1)A12(x1, x2).
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As in Marinucci and Poghosyan(2001) we also consider the partial
backshift operator satisfying

(2.7) B1ξ(t1, t2) = ξ(t1 − 1, t2) and B2ξ(t1, t2) = ξ(t1, t2 − 1),

which enables us to write (2.1) more compactly as

(2.8) X(t1, t2) =
∞∑
i1=0

∞∑
i2=0

a(i1, i2)Bi1
1 B

i2
2 ξ(t1, t2)

= A(B1, B2)ξ(t1, t2),

where

A(B1, B2) =
∞∑
i1=0

∞∑
i2=0

a(i1, i2)Bi1
1 B

i2
2 .

The above ideas shall be exploited to establish the limit theorems(strong
law of large numbers, central limit theorem) for the linear random field
on Z2. To this aim, we write

(2.9) ξγ(t1, t2) = Aγ(L1, L2)ξ(t1, t2),

where for i = 1, 2 the operator Li is defined as Li = Bi for i ∈ γ, Li = 1
otherwise; that is

ξ1(t1, t2) = A1(B1, 1)ξ(t1, t2),

ξ2(t1, t2) = A2(1, B2)ξ(t1, t2),

ξ12(t1, t2) = A12(B1, B2)ξ(t1, t2).

3. Results

Lemma 3.1(Zhang(2000)) Let {ξt, t ∈ Zd} be a field of stationary
LNQD random variables with Eξt = 0. Then,

(i) there exists a positive constant Dp such that

(3.1) E|
∑

1≤t≤n
ξt|p ≤ Dp|n|

p
2E|ξt|p

for any p ≥ 2 and for any n ∈ Zd+,
(ii) there exists a positive constant Dq such that

(3.2) E max
1≤m≤n

|
∑
j≤m

ξj|q ≤ Dq|n|
q
2E|ξj|q

for any q > 2 and for any n ∈ Zd+.
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Lemma 3.2 Let {ξ(t1, t2)} be a field of identically distributed LNQD
random varkables with Eξ(t1, t2) = 0 and E|ξ(t1, t2)|q < ∞ for q > 2.
Assume that (2.2) and (2.4) hold. Then,

(3.3) E|ξγ(t1, t2)|q <∞ for γ ∈ Γ

Proof It follows from (2.2), (2.4) and (2.6) that

0 ≤
∞∑
i1=0

∞∑
i2=0

aγ(i1, i2) <∞.

Hence,

(3.4) ξγ(t1, t2) =

∞∑
i1=0

∞∑
i2=0

aγ(i1, i2)ξ(t1 − i1, t2 − i2)

by (2.5), (2.7) and (2.9). From (3.4) we have

ξγ(0, 0) =
∞∑
i1=0

∞∑
i2=0

aγ(i1, i2)ξ(−i1,−i2)

=
∞∑
i=0

aγ(φ(i))ξ(−φ(i))

where φ : Z→ Z2 and {ξ(−φ(i))} is a sequence of identically distributed
LNQD random variables. Hence, q > 2

E|ξγ(t1, t2)|q = E|ξγ(0, 0)|q

= [{E|
∞∑
i=0

aγ(φ(i))ξ(−φ(i))|q}
1
q ]q

≤ [
∞∑
i=0

aγ(φ(i))(E|ξ(−φ(i))|q)
1
q ]q

≤ C[
∞∑
i=0

aγ(φ(i))]q <∞,

where the first bound follows from Minkowski’s inequality and the second
bound from condition (2.4).

Theorem 3.3 Let {X(t1, t2)} be defined as in (2.1) and {ξ(t1, t2), (t1, t2) ∈
Z2} a field of identically distributed LNQD random variables with Eξ(t1, t2)
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= 0 and E|ξ(t1, t2)|q < ∞ for q > 2. Assume that (2.2) and (2.4) hold.
Then,

(3.5) σ−1|n|−
1
2

n1∑
t1=1

n2∑
t2=1

X(t1, t2)→D A(1, 1)N(0, 1),

where n = (n1, n2) and σ2 =
∑

(t1,t2)∈Z2 Cov(ξ(0, 0), ξ(t1, t2)) <∞.

Corollary 3.4 Let X(t1, t2) satisfy model (2.1) and {ξ(t1, t2)} a 2-
parameter array of identically distributed LNQD random variables with
Eξ(t1, t2) = 0, E|ξ(t1, t2)|q < ∞ for q > 2. If a(i1, i2) = 1 for i1 = i2 =
0, a(i1, i2) = 0 otherwise, then for d = 2, (1.1) holds.

Example 3.5 Let A(x1, x2) = 1 + x1 + x1x2 + x2
2 and let

X(t1, t2) = ξ(t1, t2) + ξ(t1 − 1, t2) + ξ(t1 − 1, t2 − 1) + ξ(t1, t2 − 1)

= A(B1, B2)ξ(t1, t2)

for A(B1, B2) = 1 + B1 + B1B2 + B2
2 . Then Theorem 3.3 implies, as

n→∞,

(σ2|n|)−
1
2

n1∑
t1=1

n2∑
t2=1

X(t1, t2)→D 4N(0, 1), n = (n1, n2).

From Corollary in Matula(1992) we obtain the following lemma.
Lemma 3.6 Let {ξn, n ≥ 1} be a sequence of identically distributed
LNQD random variables with Eξ1 = 0 and Eξ2

1 <∞. Then

n∑
i=1

ξi/n→ 0 a.s. as n→∞.

Theorem 3.7 Let {X(t1, t2)} be defined as in (2.1), where {ξ(t1, t2),
(t1, t2) ∈ Z2} is a field of the identically distributed LNQD random
variables with Eξ(t1, t2) = 0, E|ξ(t1, t2)|q <∞ for q > 2 and {a(k1, k2)}
is a collection of real numbers such that a(k1, k2) ≥ 0 for all (k1, k2),
k1, k2 ∈ N ∪ {0}. Then E|ξ1|(log+ |ξ1|)d−1 <∞ implies

(3.6) |n|−1
∑

1≤t≤n
X(t1, t2)→ 0 a.s. as n→∞,

where t = (t1, t2) ∈ Z2 and log+ x = max{1, log x}.
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Finally, we give a simple example satisfying Theorems 3.3 and 3.7.
Example 3.8 Let
(3.7)
X(t1, t2) = αX(t1−1, t2)+βX(t1, t2−1)−αβX(t1−1, t2−1)+ξ(t1, t2),

where 0 < α, β < 1. By using the partial back shifts B1 and B2 defined
as (2.7), the model (3.7) can be written as

(3.8) (1− αB1)(1− βB2)X(t1, t2) = ξ(t1, t2).

Therefore

X(t1, t2) =
1

(1− αB1)(1− βB2)
ξ(t1, t2)

= (

∞∑
i1=0

αi1Bi1
1 )(

∞∑
i2=0

βi2Bi2
2 ξ(t1, t2))

=

∞∑
i1=0

∞∑
i2=0

αi1βi2Bi1
1 B

i2
2 ξ(t1, t2)

=

∞∑
i1=0

∞∑
i2=0

αi1βi2ξ(t1 − i1, t2 − i2)

where a(i1, i2) = αi1βi2 and A(B1, B2) =
∑∞

i1=0

∑∞
i2=0 α

i1βi2Bi1
1 B

i2
2 .

The representation (3.8) elucidates the meaning of a ”Doubly Geo-
metric Spatial Autoregressive Model”.

If {ξ(t1, t2) ∈ Z2} is a field of identically distributed LNQD random
variables with mean zero and finite variance, then under conditions of
Theorems 3.3 and 3.7, the random field X(t1, t2) satisfying (3.7) provides
a simple example that ensures (3.5) and (3.6).

4. Proofs

Proof of Theorem 3.3: From Theorem 1.1 we have

(4.1)
1

σ
√
|n|

n1∑
t1=1

n2∑
t2=1

ξ(t1, t2)→D N(0, 1).

From (3.2) and (3.3), there exists a positive constant Dq such that,
for any q > 2
(4.2)

E| max
1≤k1≤n1,1≤k2≤n2

k1∑
t1=1

k2∑
t2=1

ξγ(t1, t2)|q ≤ Dq|n|
q
2E|ξ(t1, t2)|q, n = (n1, n2).
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If we apply Lemma 2.1 to the backshift binomial A(B1, B2), then the
following equality holds almost surely:

X(t1, t2) = A(1, 1)ξ(t1, t2) + (B1 − 1)A1(B1, 1)ξ(t1, t2)

+ (B2 − 1)A2(1, B2)ξ(t1, t2) + (B1 − 1)(B2 − 1)A12(B1, B2)ξ(t1, t2)

which implies that,

(4.3) (n1n2)−
1
2

n1∑
t1=1

n2∑
t2=1

X(t1, t2)

= (n1n2)−
1
2 {

n1∑
t1=1

n2∑
t2=1

A(1, 1)ξ(t1, t2)−
n2∑
t2=1

ξ1(n1, t2)

+

n2∑
t2=1

ξ1(0, t2)−
n1∑
t1=1

ξ2(t1, n2) +

n1∑
t1=1

ξ2(t1, 0)

−ξ12(0, n2) + ξ12(0, 0)− ξ12(n1, 0) + ξ12(n1, n2)}

= (n1n2)−
1
2 {

n1∑
t1=1

n2∑
t2=1

A(1, 1)ξ(t1, t2) +Rn1,n2}.

Note that ξ1(·, ·), ξ2(·, ·) and ξ12(·, ·) are LNQD.
From Markov’s inequality, and (4.2),

P{ max
1≤k2≤n2

(n1n2)−
1
2 |

k2∑
t2=1

ξ1(n1, t2)| > δ} ≤
Emax1≤k2≤n2 |

∑k2
t2=1 ξ1(n1, t2)|q

(n1n2)
q
2 δq

(4.4) ≤ Cn−
q
2

1 = o(1)

as n1 →∞. We can also apply exactly the same argument to establish

(4.5) P{ max
1≤k1≤n1

(n1n2)−1|
k1∑
t1=1

ξ2(t1, n2)| > δ} = o(1) as n2 →∞.

By Lemma 3.2 we have for q > 2

E|ξ12(n1, n2)|q <∞
and hence by the same argument as above we also have

(4.6) P{ max
n1≥1,n2≥1

(n1n2)−
1
2 |ξ12(n1, n2)| > δ} = o(1) as n→∞.

Thus, we have

sup
n1≥1,n2≥1

|(n1n2)−
1
2Rn1,n2 | = o(1),
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which yields

σ−1|n|−
1
2

n1∑
t1=1

n2∑
t2=1

X(t1, t2)→D A(1, 1)N(0, 1) as n→∞

by Theorem 4.1 of Billingsley(1968).

Proof of Theorem 3.7: If we apply Lemma 2.1 to the backshift poly-
nomial A(B1, B2), we find that the following equality holds

X(t1, t2) = A(1, 1)ξ(t1, t2) + (B1 − 1)A1(B1, 1)ξ(t1, t2)

+ (B2 − 1)A2(1, B2)ξ(t1, t2) + (B1 − 1)(B2 − 1)A12(B1, B2)ξ(t1, t2)

which implies that

(4.7) (n1n2)−1
n1∑

t1=1

n2∑
t2=1

X(t1, t2)

= (n1n2)−1{
n1∑

t1=1

n2∑
t2=1

A(1, 1)ξ(t1, t2)−
n2∑

t2=1

ξ1(n1, t2) +

n2∑
t2=1

ξ1(0, t2)

−
n1∑

t1=1

ξ2(t1, n2) +

n1∑
t1=1

ξ2(t1, 0)− ξ12(0, n2)

+ξ12(0, 0)− ξ12(n1, 0) + ξ12(n1, n2)}

= (n1n2)−1{
n1∑

t1=1

n2∑
t2=1

A(1, 1)ξ(t1, t2) +Rn(t1, t2)}, where n = (n1, n2).

First we obtain

(4.8) |n|−1
n1∑
t1=1

n2∑
t2=1

A(1.1)ξ(t1, t2)→ 0 a.s. as n→∞

by Theorem 1.2. It follows from Lemmas 3.2 and 3.6 that

(n1n2)−1
n1∑
t1=1

n2∑
t2=1

ξ1(n1, t2) = n−1
2

n2∑
t2=1

ξ1(n1, t2)→ 0 a.s. as n2 →∞,

(n1n2)−1
n1∑
t1=1

n2∑
t2=1

ξ1(0, t2) = n−1
2

n2∑
t2=1

ξ1(0, t2)→ 0 a.s. as n2 →∞,

(n1n2)−1
n1∑
t1=1

n2∑
t2=1

ξ2(t1, n2) = n−1
1

n1∑
t1=1

ξ2(t1, n2)→ 0 a.s. as n1 →∞,
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and

(n1n2)−1
n1∑
t1=1

n2∑
t2=1

ξ2(t1, 0) = n−1
1

n1∑
t1=1

ξ2(t1, 0)→ 0 a.s. as n1 →∞.

Finally, we have (n1n2)−1ξ12(0, n2) → 0 a.s., (n1n2)−1ξ12(0, 0) →
0 a.s.,
(n1n2)−1ξ12(n1, 0)→ 0 a.s. and (n1n2)−1ξ12(n1, n2)→ 0 a.s. as n→∞.

Hence,

(4.9) |n|−1Rn(t1, t2)→ 0 a.s. n→∞,
which implies

|n|−1
n1∑
t1=1

n2∑
t2=1

X(t1, t2)→ 0 a.s. as n→∞

together with (4.7) and (4.8).

Remark We only consider linear random fields on Z2 because they are
the most popular and useful model in practice, and we focus on Z2

instead of the more general case Zd, d > 2, merely for the ease of presen-
tation. The asymptotic results stated in Section 3 can be shown to also
hold for Zd, d > 2, with only straight forward but tedious modifications.
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