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CLASSIFICATION OF SPACES IN TERMS OF BOTH A

DIGITIZATION AND A MARCUS WYSE

TOPOLOGICAL STRUCTURE

Sang-Eon Han and Chun, Woo-jik

Abstract. In order to examine the possibility of some topological
structures into the fields of network science, telecommunications
related to the future internet and a digitization, the paper studies
the Marcus Wyse topological structure. Further, this paper devel-
ops the notions of lattice based Marcus Wyse continuity and lattice
based Marcus Wyse homeomorphism which can be used for studying
spaces X ⊂ R2 in the Marcus Wyse topological approach. By using
these two notions, we can study and classify lattice based simple
closed Marcus Wyse curves.

1. Introduction

In relation to the mathematical recognition of a set X ⊂ Zn with
some topological structures or some adjacency relations of Zn, digital
topology played an important role in computer graphics, image synthe-
sis, image analysis, network science and so forth. It grew out of discrete
geometry expanded into applications where significant topological issues
arise. It may be of interest both for computer scientists who try to ap-
ply topological knowledge for investigating digital spaces and for math-
ematicians who want to use computers to solve complicated topological
problems.
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In digital geometry, we have used many tools from combinatorial
topology, Marcus Wyse (briefly, MW -) topology, Khalimsky topology,
digital graph theory and so forth [2, 3, 4, 5, 6, 7, 8, 10]. In partic-
ular, in order to digitize a subset of the Euclidean 2D space, many
tools from MW -topology have been used [5, 6, 8]. Let us now recall
some basic facts and terminology for further discussion. Let Z, N and
Z2 represent the sets of integers, natural numbers and points in the
Euclidean 2D space with integer coordinates, respectively. Let (R, U)
and (R2, U2) be the usual topology on the set of real numbers and
the typical product topology of (R, U), respectively. Motivated by an
Alexandroff space [1], the Marcus Wyse (briefly, MW -) 2D topologi-
cal space, denoted by (Z2, γ), was established. For a set X ⊂ Z2 we
can take the subspace induced from (Z2, γ) denoted by (X, γX). Let
f : (X, γX) := X → (Y, γY ) := Y be a Marcus Wyse (briefly, MW -
) continuous map. Both connectedness and MW -adjacency relations
are symmetric, and an MW -topological space is a T0-Alexandroff space
[5]. Indeed, in MW -topology connectedness is equivalent to pathcon-
nectedness [5]. Thus, for an MW -pathconnected subset A ⊂ X, the
image by the map f , f(A), is also an MW -pathconnected subset of
Y . Furthermore, by using both an MW -continuous map and an MW -
homeomorphism, we have efficiently studied MW -topological spaces.

In the study of the digitization of a Euclidean nD subspace, there
are a number of researches. However, this paper proposes a special kind
of digitization method of a set X ⊂ R2 (see Theorem 4.3) in terms of
both a combinatorial and a Marcus Wyse topological tool. This paper
establishes a lattice based Marcus Wyse (briefly, LMW -)continuous map
and an LMW -homeomorphism. In terms of these two notions, we can
efficiently study spaces X ⊂ R2 in the MW -topological approach. The
rest of this paper proceeds as follows.

Section 2 provides some basic notions. Section 3 proposes the no-
tion of lattice based Marcus Wyse (briefly, LMW -) continuity and in-
vestigates its various properties. In addition, in order to study spaces
X ⊂ R2 based on the MW -topological structure, this section also
establishes the notion of LMW -homeomorphism. Section 4 suggests
a method of digitizing a Euclidean 2D space X ⊂ R2 in the MW -
topological approach. Section 5 classifies LMW -curves in terms of an
LMW -homeomorphism. Section 6 concludes the paper with a summary
and further work.
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2. Preliminaries

Let us now review some basic facts and notions from the MW -
topology and the digital topology. Let Nk(p) be the k-neighbor of a
point p ∈ Zn [7, 9]. The MW -topology on Z2, denoted by (Z2, γ), is
induced from the base B = {U} in (2.1) [10], where for each point
p = (x, y) ∈ Z2

U :=

{
U(p) := N4(p) ∪ {p} if x+ y even, and

{p} : else.

}
(2.1)

In (2.1), the terminology even can be exchanged into odd.
In relation to the further statement of a point in Z2, in this paper we
call a point p = (x1, x2) double even if x1 + x2 is an even number such
that each xi is even i ∈ {1, 2}; even if x1 + x2 is an even number such
that each xi is odd, i ∈ {1, 2}; and odd if x1 + x2 is an odd number.

In all subspaces of (Z2, γ) of Figures 1, 2, 3, and 4, the symbols ■
and • mean a double even point and an odd point, respectively. Further,
each of the white squares in Figures 1, 2, 3 and 4 means an even point.
In view of (2.1), we can clearly obtain the following:

Remark 2.1. In (Z2, γ) the singleton with either a double even point
or an even point is a closed set. In addition, the singleton with an odd
point is clearly an open set.

In this paper a setX ⊂ Z2 will be considered to be a subspace (X, γX)
induced from (Z2, γ). As a digital image has been often studied with
digital connectivity [7, 9], it is reasonable to study a 2DMW -topological
space (X, γX) with MW -connectedness or γ-adjacency.

Definition 1. [10] For a set X ⊂ Z2 consider the subspace (X, γX)
induced from (Z2, γ). Then we call it an MW -topological space.

Let us recall the following terminology which can be used for studying
an MW -topological space. In this paper for (X, γX) and x ∈ X we
denote by O(x,X) the smallest open set of the point x in γX .

Definition 2. Let (X, γX) := X be an MW -topological space. Then
we define the following:

(1) Consider twoMW -topological spaces (A, γA) := A and (B, γB) :=
B such that A and B are nonempty subsets of X. Then we say that
two subspaces A and B of X are not MW -connected to each other if
no points a ∈ A and b ∈ B exist such that a ∈ O(b,X) or b ∈ O(a,X).
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We say that two distinct points a := {a} and b := {b} in X are not
MW -connected in (X, γX) if neither a ∈ O(b,X) nor b ∈ O(a,X).

(2) We say that a space X is MW -connected if it is not a union of
two disjoint non-empty MW -spaces not MW -connected to each other.

(3) Distinct points x, y ∈ X are called MW -path connected if there is
a sequence (or a path) (x0, x1, · · · , xm) on X with {x0 = x, x1, · · · , xm =
y} such that xi and xi+1 are MW -connected, i ∈ [0,m − 1]Z,m ≥ 1.
This sequence is called an MW -path. Furthermore, the number m is
called the length of this MW -path. Furthermore, an MW -path is called
a closed MW -curve if x0 = xm.

(4) For a point x ∈ X, we say that the maximal MW -connected
subset ofX containing the point x ∈ X is theMW -connected component
of x ∈ X.

(5) A simple MW -path in X is the sequence (xi)i∈[0,m]Z such that xi
and xj are MW -connected if and only if either j = i+ 1 or i = j + 1.
Furthermore, we say that a simple closed MW -curve with m elements
(xi)i∈[0,m]Z is a simple MW -path with x0 = xm and that xi and xj
are MW -connected if and only if either j = i + 1(modm) or i =
j + 1(modm).

Let us now establish the MW -topological category and recall an
MW -homeomorphism.

Definition 3. [10] For two MW -topological spaces (X, γX) := X
and (Y, γY ) := Y , a function f : X → Y is said to be MW -continuous
at a point x ∈ X if f is continuous at the point x from the viewpoint of
MW -topology.
Furthermore, we say that a map f : X → Y is MW -continuous if it is
MW -continuous at every point x ∈ X.

By using MW -continuity, we can obtain the MW -topological cate-
gory, denoted by MC, consisting of two classes, as follows.

(1) A class of objects (X, γX),

(2) For every ordered pair of objects (X, γX) and (Y, γY ), a class of
all MW -continuous maps f : (X, γX) → (Y, γY ) as morphisms.

Definition 4. [10] For two spaces (X, γX) and (Y, γY ), a map h :
X → Y is called an MW -homeomorphism if h is a MW -continuous
bijection and that h−1 : Y → X is MW -continuous.

In Definition 4, we denote by X ≈MW Y an MW -homeomorphism.
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3. Lattice Based MW -continuous map and Its Properties

In this section, based on the MW -topological category, we establish
the lattice based MW -topological category in terms of a lattice based
MW -continuous map, and the notion of lattice basedMW -homeomorph
ism. For a non-empty set X ⊂ R2 consider its topological subspace in-
duced from (R2, U2) denoted by (X,U2

X). In order to study a (Euclidean
2D) space X ⊂ R2 in the lattice based MW -topological approach, we
define the following rule so called “the local rule based on the MW -
topology”.

Definition 5 (Local rule based on the MW -topology on Z2). In R2,
for each point p ∈ Z2 and i ∈ {1, 2} we assume the following neighbor
of p:

NM (p) :=



{(t1, t2)| ti ∈ [pi −
1

2
, pi +

1

2
]}

if p = (p1, p2) is a double even point, and

{(t1, t2)| ti ∈ [pi −
1

2
, pi +

1

2
]} \ {(p1 ±

1

2
, p2 ±

1

2
)}

if p = (p1, p2) is an even point, and

{(t1, t2)| ti ∈ (pi −
1

2
, pi +

1

2
)} if p = (p1, p2) is an odd point.


In Figure 1(a), (b) and (c), for the double even point, the even point

and the odd points p we can observe their NM (p) ⊂ R2.

Proposition 3.1. The set {NM (p)| p ∈ Z2} is a partition of R2 in
the MW-topological approach.

In Proposition 3.1, since the current local rule of a point p ∈ Z2

is motivated from the MW-topological structure of the point p ∈ Z2,
we can state that the partition of Proposition 3.1 is taken in the MW-
topological approach.

In view of Remark 2.1, the local rule of Definition 5 can make sub-
stantial contributions to the study of a digitization of a Euclidean 2D
space X ⊂ R2 in the MW -topological approach. In terms of (2.1), for
each point x ∈ (X, γX) we can obtain the smallest open neighborhood
of x denoted by SN(x) ⊂ X that can be used for establishing the fol-
lowing neighborhood in R2. By using SN(x) in (X, γX), we can define
the following:
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Definition 6. For a point x := (x1, x2) ∈ Z2 we define the smallest
neighborhood of x as the set SNM (x) := ∪q∈SN(x)NM (q) ⊂ R2, where

SN(x) is the smallest open neighborhood of x in (Z2, γ).

Remark 3.2. In Definition 6 we can observe that for a double even
point x ∈ Z2 SNM (x) cannot be an open set in (R2, U2) owing to
the corner points of NM (x). For instance, consider the double even
point (0, 0) := x of Figure 1(d). Since SNM (x) includes the four points
(±1

2 ,±
1
2) in NM (x), it cannot be an open set in (R2, U2).

Definition 7. For (X,U2
X) and a point x ∈ X ∩ Z2 we can take

NM (x) ∩ X ⊂ X and SNM (x) ∩ X ⊂ X. Then we briefly use the
notations NM (x) := NM (x) ∩X ⊂ X and SNM (x) := SNM (x) ∩X.

  corresponding  to

 the  double even, even and odd points  p


p
p


(a)
 (c)


SN    (x)

of  the double even  point  x


(0, 0)


(0, 1)


(-1,  0)
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(d)
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(b)
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SN(x)

of  the double even  point  x


 from the viewpoint of  MW-topology


(0, 0)


(0, 1)


(-1,  0)


x


(e)


Figure 1. (a)(resp. (b)) Configuration of NM (p) ⊂ R2

corresponding to the double even (resp. an even) point
p. (c) NM (p) ⊂ R2 corresponding to the odd point p.
(d) Configuration of SNM (x) of the double even point x.
(e) Configuration of the smallest open neighborhood of
the double even point x in (Z2, γ), SN(x).

Each space in Figures 2, 3 and 4 is presented by using NM (p) of
Definition 7. In Figure 1(d), for the double even point x we can observe
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SNM (x) by using the smallest open neighborhood of x in an MW -
topological space.
By using both the local rule of Definition 5 and the MW -continuity, we
can establish the following notion.

Definition 8. Let F : (X,U2
X) → (Y, U2

Y ) be a map. Then we
say that F is a lattice-based MW -continuous map (briefly, an LMW -
continuous map) if

(1) F (X ∩ Z2) ⊂ Y ∩ Z2,
(2) the restriction of F to X ∩Z2 := X ′ with the codomain Y ∩Z2 :=

Y ′, denoted by f : X ′ → Y ′ with f(x) = F |X′(x), is an MW -continuous
map, and

(3) for each point p ∈ X ′, F (NM (p)) ⊂ NM (f(p)).

Example 3.3. (1) Consider two spaces (X,U2
X) and (Y, U2

Y ) (see
Figure 2 (a)), where X = ∪xi∈X′NM (xi) and X ′ = {xi| i ∈ [0, 7]Z},
and Y = X − {NM (xi)| i ∈ {6, 7}} and Y ′ = {xi| i ∈ [0, 5]Z}. Assume
the map F : (X,U2

X) → (Y, U2
Y ) given by F (NM (xi)) ⊂ NM (xi), i ∈

[0, 5]Z, F (NM (x7)) ⊂ NM (x0) and F (NM (x6)) ⊂ NM (x5). Further, the
restriction of F to X ∩ Z2 := X ′ with the codomain Y ∩ Z2 := Y ′,
denoted by f : X ′ → Y ′, is given by f(xi) = xi, i ∈ [0, 5]Z, f(x7) = x0
and f(x6) = x5. Then we can observe that F is an LMW -continuous
map.

(2) Consider two spaces (X,U2
X) and (Z,U2

Z) (see Figure 2 (b)),
where X = ∪xi∈X′NM (xi) and X ′ = {xi| i ∈ [0, 7]Z}, and Z = X −
{NM (xi)| i ∈ {1, 5}} and Z ′ = {xi| i ∈ [0, 7]Z−{1, 5}}. Assume the map
G : (X,U2

X) → (Z,U2
Z) given by G(NM (xi)) ⊂ NM (xi), i ∈ [0, 7]Z −

{1, 5}, G(NM (x1)) ⊂ NM (x0) and G(NM (x5)) ⊂ NM (x4). Further, the
restriction of G to X ∩ Z2 := X ′ with the codomain Z ∩ Z2 := Z ′,
denoted by g : X ′ → Z ′, is given by g(xi) = xi, i ∈ [0, 7]Z − {1, 5},
g(x1) = x0 and g(x5) = x4. Then we can observe that G cannot be an
LMW -continuous map at the point x5 ∈ X ′. More precisely, while the
map G satisfies the properties (1) and (3), it cannot satisfy (2) at the
point x5 because g(SN(x5)) cannot be a subset of SN(x4) ⊂ Z ′, where
SN(x5) = {x4, x5, x6} ⊂ X ′ and SN(x4) = {x4} ⊂ Z ′.

When showing the LMW -continuity of the map F in Figure 2(a),
we can observe a big gap between two points x0 and x5 in Y . How-
ever, we do not need to concern it because the set {x6, x7} ⊂ X ′ (resp.
{NM (x6), NM (x7)} ⊂ X) which is the preimage of {x0, x5} ⊂ Y ′ (resp.
{NM (x0), NM (x5)} ⊂ Y ) by the map f (resp. F ) cannot be connected
in (X ′, γX′) (resp. (X,U2

X)).
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Figure 2. (a) LMW -continuity. (b) Non-LMW -continuity.

Remark 3.4 (Merits and limitation of LMW -continuity). (1) When
digitizing a (Euclidean 2D) spaceX ⊂ R2 (see Theorem 4.3) in theMW -
topological approach, as the points x ∈ X−∪p∈Z2∩XNM (p) are due to be

ignored, the LMW -continuity is meaningful to study X ⊂ R2 in terms
of the MW -topological structure. Further, as the LMW -continuity is
defined by using combinatorial and Marcus Wyse topological tools, its
utility can be expanded in the fields of the combinatorial and the MW -
topology.

(2) There are some limitations of the LMW -continuity, as follows.
An LMW -continuous map F : (X,U2

X) → (Y, U2
Y ) is focused on the

mapping of the points x ∈ ∪p∈Z2∩XNM (p) ⊂ X. Thus the points x ∈
X−∪p∈Z2∩XNM (p) are not related to the properties (1)-(3) of Definition
8.

We can establish the lattice based MW -topological category, briefly
LMC, consisting of two things:

(∗ 1) A class Ob(C ) consisting of (X,Un
X) := X;

(∗ 2) A class Mor(X ,Y ) consisting of LMW -continuous maps as
morphisms.
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Motivated by an MW -homeomorphism, we can establish the notion
of LMW -homeomorphism in LMC, as follows.

Definition 9. Let F : (X,U2
X) := X → (Y, U2

Y ) := Y be an LMW -
continuous map. Then we say that F is an LMW -homeomorphism if

(1) the restriction of F to X ∩Z2 := X ′ with the codomain Y ∩Z2 :=
Y ′, denoted by f : (X ′, γX′) → (Y ′, γY ′) with f(x) = F |X′(x), is an
MW -homeomorphism,

(2) the inverse of f has an extension G : Y → X such that G◦F = 1X
and F ◦G = 1Y .

In Definition 9, we denote byX ≈LMW Y an LMW -homeomorphism.
By using an LMW -homeomorphism, we can classify spaces X ⊂ R2 in
the MW -topological approach.

4. Method of Digitizing a Euclidean 2D Space X ⊂ R2 by Us-
ing the Local Rule Based on the MW -Topological Struc-
ture

In this section, by using the notions discussed in Sections 2 and 3, we
study a method of digitizing a space X ⊂ R2 in the MW -topological
approach.

Theorem 4.1. If F : (X,U2
X) → (Y, U2

Y ) is an LMW -continuous
map, then for every point p ∈ X ∩ Z2 := X ′ we obtain F (SNM (p)) ⊂
SNM (f(p)), where f : (X ′, γX′) → (Y ′, γY ′) is the restriction of F to X ′

with the codomain (Y ′, γY ′) and Y ′ := Y ∩ Z2. However the converse
does not hold.

Proof: By using the LMW -continuity of F , we can obtain the fol-
lowing:{

F (SNM (p)) = F (∪x∈SN(p)NM (x)) = ∪f(x)∈SN(f(p))F (NM (x))

⊂ ∪f(x)∈SN(f(p))NM (f(x)) = SNM (f(p)).

}
(4.1)

By (4.1), we can observe F (SNM (p)) ⊂ SNM (f(p)).
Let us now prove that for each point p ∈ X ∩ Z2 F (SNM (p)) ⊂

SNM (f(p)) does not imply the LMW -continuity of F . For some point
x ∈ NM (p), since the hypothesis that F (SNM (p)) ⊂ SNM (f(p)) need
not imply that F (x) ∈ NM (f(p)) with x ̸= p, the proof is completed. □

In order to digitize a space X ⊂ R2 in the MW -topological approach,
we need to establish the following relation in NM (p) of Definition 7.
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Definition 10. In the set X ⊂ R2, we say that for the two points
x, y ∈ X x is related to y if x, y ∈ NM (p) for some point p ∈ X ∩Z2. In
this case we use the notation (x, y) ∈ L in the set (X,L).

Lemma 4.2. The relation L in the set (X,L) of Definition 10 is an
equivalent relation.

By Lemma 4.2, we can digitize X in an MW -topological approach,
as follows.

Theorem 4.3. For a given space X ⊂ R2 take X ∩ Z2 := X ′. Let
us proceed the following three steps:

(1) Delete the points x ∈ X − ∪p∈X′NM (p) from the given space
(X,U2

X).
(2) By Lemma 4.2, consider NM (p) to be the equivalence class of the

point p, i.e., NM (p) := [p] = p, p ∈ X ′.
(3) Assume D(X) := ∪{p| p ∈ X ′} to be the digitizing space of X.
Then there is a functorD : LMC → MC given by bothD((X,U2

X)) =
(D(X), γD(X)) and D(F ) = f , where F : (X,U2

X) := X → (Y, U2
Y ) :=

Y ∈ LMC and f is defined to be the restriction of F to (D(X), γD(X))
with the codomain (D(Y ), γD(Y )).
Concretely, we can say that f is a digitizing map of F in the MW -
topological approach and this functor D is a digitizing functor based on
the MW -topology.

Proof: Before proving Theorem 4.3, it is helpful to write an algorithm
for digitizing a space X ∈ LMC into a space D(X) ∈ MC. Namely, for
(X,U2

X) ∈ LMC we can proceed its digitization in the MW -topological
approach with the following steps (see Figure 3):

(Step 1) Take the points p ∈ Z2 ∩X := X ′.
(Step 2) For each point p ∈ X ′ take NM (p).
(Step 3) Delete the points x ∈ X − ∪p∈X′NM (p).
(Step 4) By Lemma 4.2, assume NM (p) to be the quotient space p,

i.e., NM (p) := p.
(Step 5) Assume the set D(X) := ∪{p| p ∈ X ′} with the MW -

topology such as (D(X), γD(X)) ∈ MC.

Let us now consider a space (X,U2
X) ∈ LMC. After digitizing X in

terms of the functor of this theorem, we denote it by D(X) ⊂ X.
To prove the assertion, we only suffice to show that{

D(1(X,U2
X)) = 1(D(X),γD(X)) and

D(G ◦ F ) = D(G) ◦D(F ),

}
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where (X,U2
X) ∈ LMC and G,F ∈ LMC.

First, we can clearly observe that D(1(X,U2
X)) = 1(D(X),γD(X)).

Second, in LMC take F : (X,U2
X) := X → (Y, U2

Y ) := Y and G :
(Y, U2

Y ) := Y → (Z,U2
Z) := Z. Then, in MC we can obtain the maps{

D(F ) := f : (D(X), γD(X)) → (D(Y ), γD(Y )) and

D(G) := g : (D(Y ), γD(Y )) → (D(Z), γD(Z)).

}
Consider the composition G ◦F : X → Z. Then we can observe that

D(G ◦ F ) = g ◦ f = D(G) ◦D(f). □

3
x


1
x
 2
x


4
x


x


3
x


1
x
 2
x


4
x


Using Step (3) above


3
x


1
x
 2
x


4
x


D (x)


Figure 3. Configuration of the digitization followed
from Theorem 4.3.

Lemma 4.4. Let (A,U2
A) be a connected nonempty subset of (X,U2

X)
in LMC. Then its digitization (D(A), γD(A)) of Theorem 4.3 need not
be MW -connected in (D(X), γD(X)).

Proof: Consider the subset (A,U2
A) in Example 3.3 (see the set A ⊂ X

Figure 2(a)), where A = ∪i∈{2,3}NM (xi). While the set A is connected,
D(A) cannot be MW -connected. □

Corollary 4.5. Let F : (X,U2
X) → (Y, U2

Y ) be an LMW -continuous
map in LMC. If A ⊂ X is connected in LMC, then f(A∩Z2) need not
be MW -connected, where D(F ) = f is the digitizing map in Theorem
4.3.

Proof: Owing to the LMW -continuity of F , by Theorem 4.3, the map
D(F ) := f is an MW -continuous map. But, as discussed in Lemma 4.4,
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for a connected subset A of (X,U2
X) ∈ LMC since A ∩ Z2 need not

be MK-connected, the image f(A ∩ Z2) by the MK-continuous map f
need not be MK-connected. □

5. Classification of Spaces in terms of an LMW -homeomorph
ism

In this section we classify spaces X ⊂ R2 in terms of an LMW -
homeomorphism.

We recall that a simple closed MW -curve with l elements in Z2

(briefly, SC2,l
M := (xi)i∈[0,l−1]Z) is a simple MW -path (xi)i∈[0,l]Z with

x0 = xl and xi and xj are MW -connected if and only if either j =
i+ 1(mod l) or i = j + 1(mod l).

Definition 11. For the functor D : LMC → MC of Theorem 4.3, if

D(X) is an SC2,l
M , then we say that the space X ′ := ∪p∈Z2∩XNM (p) is

an SC2,l
LM named by a simple closed LM -curve in R2 such that the set

D(X) := {p| p ∈ X ′ has the cardinality l.

Theorem 5.1. If Sn,l0
LM is LM -homeomorphic to S2,l1

LM , then D(Sn,l0
LM )

is MW -homeomorphic to D(S2,l1
LM ). But the converse does not hold.

Proof: For two S2,l0
LM and S2,l1

LM that are LM -homeomorphic to each
other, by using the digitizing functor followed from Theorem 4.3, we can
take two simple closed MW -curves with l0 and l1 elements in Z2 such

as S2,l0
M (⊂ S2,l0

LM ) and S2,l1
M (⊂ S2,l1

LM ). By the hypothesis that S2,l0
LM ≈LMW

S2,l1
LM , we can obtain that S2,l0

M ≈MW S2,l1
M , where D(S2,l0

LM ) = S2,l0
M and

D(S2,l1
LM ) = S2,l1

M .
Let us now prove that the converse does not hold with the follow-

ing example. Consider the two spaces X and Y in LMC (see Figure

4) which are S2,10
LM . Then we can take D(X) (resp. D(Y )) in MC

from X (resp. Y ) so that D(X) is MW -homeomorphic to D(Y ) as

S2,10
M . However, we can observe that the two spaces X and Y cannot

be LMW -homeomorphic to each other. More precisely, we can observe
that X has four double even points, five odd points and the only one
even point. In addition, Y has the only one double even point, four
even points and five odd points. Further, each of both the four double
even points and one even point xi ∈ D(X) has its smallest open neigh-
borhood SN(xi) = {xi(mod 10)−1, xi, xi(mod 10)+1} ⊂ D(X), and each of
both the four double even points and one even point yi ∈ D(Y ) has its
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smallest open neighborhood SN(yi) = {yi(mod 10)−1, yi, yi(mod 10)+1} ⊂
D(Y ). In addition, each of the odd points in D(X) (resp. D(Y )) has
SN(xi) = {xi} ⊂ D(X) (resp. SN(yi) = {yi} ⊂ D(Y )). In order for
the spaces X and Y to be LMW -homeomorphic to each other, suppose
that there is an LMW -homeomorphism F : X → Y . Then, for each odd
point xi ∈ D(X) F (NM (xi)) should be mapped into NM (f(xi)), where
the point f(xi) is an odd point in D(Y ). If not, the map F cannot
be an LMW -homeomorphism. Thus, for convenience, we can assume
that F (xi) = yi, i ∈ {1, 3, 5, 7, 9}. Then, by Theorem 4.1, for each point
xi, i ∈ [0, 9]Z we obtain F (SNM (xi)) ⊂ SNM (f(xi)). Thus the map F
cannot be an LMW -homeomorphism between X and Y with the fol-
lowing reason. Consider the even points x4 ∈ D(X) and y4 ∈ D(Y ),
then NM (y4) ⊂ Y cannot be homeomorphic to the singleton {x4} ⊂ X,
contrary to the property (3) of Definition 9. □
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Figure 4. Comparison between S2,l0
LM and S2,l1

LM with l0 = l1.

Corollary 5.2. Consider two S2,l0
LM and S2,l1

LM . Even if l0 = l1, S
n,l0
LM

need not be LM -homeomorphic to S2,l1
LM .

Proof: As an example consider the two space X and Y in Figure
4 in which they have ten elements as S2,10

LM . However, they cannot be
LM -homeomorphic to each other. □

In view of Theorem 5.1 and Corollary 5.2, we need to establish the
following relation.

Definition 12. Let L(SC2,l
M ) be the set of all spaces X ⊂ R2 for

which each of their digitizations followed from Theorem 4.3 is an SC2,l
M .

If X and Y belong to L(SC2,l
M ), then we say that X is related to Y .
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The relation of Definition 12 is clearly an equivalence relation. By

[X] we denote the equivalence class of X ∈ L(SC2,l
M ). According to

Definition 12 and Theorem 5.1, we can obtain the following:

Corollary 5.3. For two spaces X,Y ∈ L(SC2,l
M ) even if X and Y

need not be LMW -homeomorphic to each other, we obtain [X] = [Y ].

In view of Corollary 5.3, although two spaces X and Y in Figure 4
cannot be LMW -homeomorphic to each other, we can conclude that
[X] = [Y ].

6. Summary and Further Work

We have studied the set of points displayed on R2 in terms of a
digitization followed from the Marcus Wyse topological approach. In
order to examine the possibility of a usage of some topological structures
into the field of telecommunications related to the future internet and
to study spaces X ⊂ R2 in the Marcus Wyse topological approach. the
paper develops the notions of a local rule related to the Marcus Wyse
topological structure, lattice based Marcus Wyse continuity and lattice
based Marcus Wyse homeomorphism. As a further work we need to
formulate various topological tools which can support the study of the
future internet.
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