SCALAR CURVATURES ON SU(3)/T(k, l)

Yong-Soo Pyo*, Hyun-Ju Shin, and Joon-Sik Park

Abstract. In this paper, we estimated the Ricci curvature and the scalar curvature on SU(3)/T(k,l) under the condition $(k,l) \in \mathbb{R}^2$ ($|k|+|l|\neq 0$), where the four isotropy irreducible representations in SU(3)/T(k,l) are, not necessarily, mutually equivalent or inequivalent.

1. Introduction

Geometric properties on SU(3)/T(k,l) have been investigated under the condition $k, l \in \mathbb{Z}$ ($|k| + |l| \neq 0$), so far. In this paper, we estimate scalar curvatures of Riemannian homogeneous spaces SU(3)/T(k,l) for $(k,l) \in \mathbb{R}^2$ ($|k| + |l| \neq 0$).

The results of the studies on the family of the homogeneous spaces SU(3)/T(k,l) $k,l \in \mathbb{Z}$ $(|k|+|l|\neq 0)$ are famous:

- (i) M. Kreck and S. Stolz (cf. [4]) showed that among the family 7-dimensional homogeneous spaces $\{SU(3)/T(k,l) \mid k,l \in \mathbb{Z} \text{ which are mutually prime}\}$, there exist two Riemannian manifolds which are homeomorphic but not diffeomorphic.
- (ii) For all (k, l), SU(3)/T(k, l) admits a positively curved SU(3)-invariant Riemannian metric (cf. [1]).
- (iii) SU(3)/T(k,l) for each (k,l) admits a SU(3)-invariant Einstein metric (cf. [11]).

Received September 27, 2011. Accepted November 16, 2011.

²⁰⁰⁰ Mathematics Subject Classification. isotropy representation, reductive homogeneous space, Ricci curvature, scalar curvature.

Key words and phrases. 53C30, 53C25.

^{*}Corresponding author

- (iv) The identity map of SU(3)/T(k,l) for each (k,l) which is normal homogeneous is stable as a harmonic map (cf. [6]).
- (v) The spectrum of the Laplacian of the metric in (ii) is determined (cf. [8, 9]).

Not under the condition $(k,l) \in \mathbb{Z}^2$ $(|k| + |l| \neq 0)$, the studies on the family of the homogeneous spaces SU(3)/T(k,l) are rarely ever seen. Recently, one of the present authors (cf. [7]) obtained a necessary and sufficient condition for four isotropy irreducible representations in SU(3)/T(k,l) to be mutually inequivalent, under the condition $(k,l) \in \mathbb{R}^2$ $(|k| + |l| \neq 0)$. And then, under this inequivalent condition, he estimated the Ricci and scalar curvatures on SU(3)/T(k,l).

In this paper, we do not assume that four isotropy irreducible representations in SU(3)/T(k,l) are, not necessarily, either equivalent or inequivalent. But, we assume that $(k,l) \in \mathbb{R}^2$ ($|k|+|l| \neq 0$). Under these conditions, we estimate the Ricci curvature and the scalar curvature on SU(3)/T(k,l) with a SU(3)-invariant Riemannian metric.

2. Scalar curvatures on SU(3)/T(k,l)

2.1. The curvature tensor field on a homogeneous Riemannian space

Let G be a compact connected semisimple Lie group and H a closed subgroup of G. We denote by \mathfrak{g} and \mathfrak{h} the corresponding Lie algebras of G and H, respectively. Let B be the negative of the Killing form of \mathfrak{g} . We consider the $\mathrm{Ad}(H)$ -invariant decomposition $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ with $B(\mathfrak{h}, \mathfrak{m}) = 0$. Then the set of G-invariant symmetric covariant 2-tensor fields on G/H can be identified with the set of $\mathrm{Ad}(H)$ -invariant symmetric bilinear forms on \mathfrak{m} . In particular, the set of G-invariant Riemannian metrics on G/H is identified with the set of $\mathrm{Ad}(H)$ -invariant inner products on \mathfrak{m} (cf. [2, 3, 6, 7]).

Let <, > be an inner product which is invariant with respect to Ad(H) on \mathfrak{m} , where Ad denotes the adjoint representation of H in \mathfrak{g} . This inner product <, > determines a G-invariant Riemannian metric $g_{<,>}$ on G/H.

For the sake of the calculus, we take a neighborhood V of the identity element e in G and a subset N (resp. N_H) of G (resp. H) in such a way that

- (i) $N = V \cap \exp(\mathfrak{m}), N_H = V \cap \exp(\mathfrak{h}),$
- (ii) the map $N \times N_H \ni (c, h) \longmapsto ch \in N \cdot N_H$ is a diffeomorphism,
- (iii) the projection π of G onto G/H is a diffeomorphism of N onto a neighborhood $\pi(N)$ of the origin $\{H\}$ in G/H.

Here, $\{\exp(tX)|t\in\mathbb{R}\}\$ for $X\in\mathfrak{g}$ is a 1-parameter subgroup of G.

Now for an element $X \in \mathfrak{m}$, we define a vector field X^* on the neighborhood $\pi(N)$ of $\{H\}$ in G/H by

$$X_{\pi(c)}^* := (\tau_c)_* X_{\{H\}} \in T_{\pi(c)} G/H, \quad (c \in N),$$

where τ_c denotes the transformation of G/H which is induced by c. Let $\{X_i\}_i$ be an orthonormal basis of the inner product space $(\mathfrak{m}, <,>)$. Then $\{X_i^*\}_i$ is an orthonormal frame on $\pi(N)(\subset G/H)$.

On the other hand, the connection function α (cf. [5, p.43]) on $\mathfrak{m} \times \mathfrak{m}$ corresponding to the invariant Riemannian connection of $(G/H, g_{<,>})$ is given as follows (cf. [5, p.52]):

$$(2.1) \hspace{1cm} \alpha(X,Y) = \frac{1}{2}[X,Y]_{\mathfrak{m}} + U(X,Y), \quad (X,Y \in \mathfrak{m})\,,$$

where U(X,Y) is determined by

$$(2.2) 2 < U(X,Y), Z > = < [Z,X]_{\mathfrak{m}}, Y > + < X, [Z,Y]_{\mathfrak{m}} >$$

for X,Y and $Z \in \mathfrak{m}$, and $X_{\mathfrak{m}}$ denotes the \mathfrak{m} -component of an element $X \in \mathfrak{g} = \mathfrak{h} + \mathfrak{m}$. Let ∇ be the Levi-Civita connection on the Riemannian manifold $(G/H, g_{<,>})$. Then on $\pi(N)$ $(\nabla_{X^*}Y^*)_{\{H\}} = \alpha(X,Y)$ $(X,Y \in \mathfrak{m})$. Moreover, the expression for the value at $p_o := \{H\} (\in G/H)$ of the curvature tensor field is as follows (cf. [5, p.47]):

(2.3)
$$R(X,Y)Z = \alpha(X,\alpha(Y,Z)) - \alpha(Y,\alpha(X,Z)) - \alpha([X,Y]_{\mathfrak{m}},Z) - [[X,Y]_{\mathfrak{h}},Z], \quad (X,Y,Z \in \mathfrak{m}),$$

where $X_{\mathfrak{h}}$ denotes the \mathfrak{h} -component of an element $X \in \mathfrak{g} = \mathfrak{h} + \mathfrak{m}$.

2.2. Ricci curvatures on SU(3)/T(k,l)

In this subsection, we use the following notations.

$$G=SU(3),\ \mathfrak{g}:$$
 the Lie algebra of $SU(3),\ i=\sqrt{-1},$
$$T=T(k,l)=\{diag[e^{2\pi ik\theta},e^{2\pi il\theta},e^{-2\pi i(k+l)\theta}|\theta\in\mathbb{R}\}\ \text{for}\ (k,l)\in\mathbb{R}^2\ \text{and}\ |k|+|l|\neq 0,$$

 $\mathfrak{t}(k,l)$: the Lie algebra of T(k,l),

 $(X,Y) = B(X,Y) = -6 \ Trace(XY)$: the negative of the Killing form of \mathfrak{g} .

Let E_{ij} be a real 3×3 matrix with 1 on entry (i, j) and 0 elsewhere. And we put

$$\begin{cases} X_{1} = (E_{12} - E_{21})/\sqrt{12}, & X_{2} = i(E_{12} + E_{21})/\sqrt{12}, \\ X_{3} = (E_{13} - E_{31})/\sqrt{12}, & X_{4} = i(E_{13} + E_{31})/\sqrt{12}, \\ X_{5} = (E_{23} - E_{32})/\sqrt{12}, & X_{6} = i(E_{23} + E_{32})/\sqrt{12}, \\ X_{7} = i \operatorname{diag}[(k+2l), -(2k+l), (k-l)]/\sqrt{36\gamma}, \\ X_{8} = i \operatorname{diag}[k, l, -(k+l)]/\sqrt{12\gamma}, \end{cases}$$

where $\gamma = k^2 + kl + l^2$. Then

(2.5)
$$\{X_1, \dots, X_7\}$$
 (resp. $\{X_8\}$)

is an orthonormal basis of \mathfrak{m} (resp. $\mathfrak{t}(k,l)$) with respect to $(\cdot\ ,\ \cdot)$ such that

$$\mathfrak{g} = \mathfrak{m} + \mathfrak{t}(k, l)$$
 and $(\mathfrak{m}, \mathfrak{t}(k, l)) = 0$.

If we put $\{X_1, X_2\}_{\mathbb{R}} = \mathfrak{m}_1$, $\{X_3, X_4\}_{\mathbb{R}} = \mathfrak{m}_2$, $\{X_5, X_6\}_{\mathbb{R}} = \mathfrak{m}_3$, and $\{X_7\}_{\mathbb{R}} = \mathfrak{m}_4$, then \mathfrak{m}_i are irreducible $\mathrm{Ad}(T)$ -representations.

Now, we take another $\mathrm{Ad}(T)$ -invariant inner product < , > on \mathfrak{m} such that

$$(2.6) {Xi/\sqrt{\lambda}} =: Y_i, (i = 1, 2, \dots, 6), X_7 =: Y_7$$

is an orthonormal basis of \mathfrak{m} with respect to <, >. This inner product <, > determines a G-invariant Riemannian metric g_{λ} on the homogeneous space G/T. Then from (2.6), we obtain

$$[Y_1, Y_2] = (k+l)(2\lambda\sqrt{\gamma})^{-1} Y_7 + (k-l)(2\lambda\sqrt{3\gamma})^{-1} X_8,$$

$$[Y_1, Y_3] = -(2\sqrt{3\lambda})^{-1} Y_5, \qquad [Y_1, Y_4] = -(2\sqrt{3\lambda})^{-1} Y_6,$$

$$[Y_1, Y_5] = (2\sqrt{3\lambda})^{-1} Y_3, \qquad [Y_1, Y_6] = (2\sqrt{3\lambda})^{-1} Y_4,$$

$$[Y_1, Y_7] = -(k+l)(2\sqrt{\gamma})^{-1} Y_2,$$

$$[Y_1, X_8] = -(k-l)(2\sqrt{3\gamma})^{-1} Y_2,$$

$$[Y_2, Y_3] = (2\sqrt{3\lambda})^{-1} Y_6, \qquad [Y_2, Y_4] = -(2\sqrt{3\lambda})^{-1} Y_5,$$

$$[Y_2, Y_5] = (2\sqrt{3\lambda})^{-1} Y_4, \qquad [Y_2, Y_6] = -(2\sqrt{3\lambda})^{-1} Y_3,$$

$$[Y_2, Y_7] = (k+l)(2\sqrt{\gamma})^{-1} Y_1, \qquad [Y_2, X_8] = (k-l)(2\sqrt{3\gamma})^{-1} Y_1,$$

$$[Y_3, Y_4] = l(2\lambda\sqrt{\gamma})^{-1} Y_7 + (2k+l)(2\lambda\sqrt{3\gamma})^{-1} X_8,$$

$$(2.7) \quad [Y_3, Y_5] = -(2\sqrt{3\lambda})^{-1} Y_1, \qquad [Y_3, Y_6] = (2\sqrt{3\lambda})^{-1} Y_2,$$

$$[Y_3, X_8] = -(2k+l)(2\sqrt{3\gamma})^{-1} Y_4,$$

$$[Y_4, Y_5] = -l(2\sqrt{\gamma})^{-1} Y_4,$$

$$[Y_4, Y_7] = l(2\sqrt{\gamma})^{-1} Y_3, \qquad [Y_4, Y_6] = -(2\sqrt{3\lambda})^{-1} Y_1,$$

$$[Y_4, Y_7] = l(2\sqrt{\gamma})^{-1} Y_7, \quad [Y_4, X_8] = (2k+l)(2\sqrt{3\gamma})^{-1} Y_3,$$

$$[Y_5, Y_6] = -k(2\lambda\sqrt{\gamma})^{-1} Y_7 + (k+2l)(2\lambda\sqrt{3\gamma})^{-1} X_8,$$

$$[Y_5, Y_7] = k(2\sqrt{\gamma})^{-1} Y_6,$$

$$[Y_5, X_8] = -(k+2l)(2\sqrt{3\gamma})^{-1} Y_6,$$

$$[Y_6, Y_7] = -k(2\sqrt{\gamma})^{-1} Y_5, \qquad [Y_6, X_8] = (k+2l)(2\sqrt{3\gamma})^{-1} Y_5,$$

$$[Y_7, X_8] = 0.$$

From
$$(2.2)$$
 and (2.7) , we get

$$U(Y_1, Y_7) = (k+l)(\lambda - 1)(4\lambda\sqrt{\gamma})^{-1} Y_2,$$

$$U(Y_2, Y_7) = (k+l)(1-\lambda)(4\lambda\sqrt{\gamma})^{-1} Y_1,$$

$$U(Y_3, Y_7) = l(\lambda - 1)(4\lambda\sqrt{\gamma})^{-1} Y_4,$$

(2.8)
$$U(Y_4, Y_7) = l(1 - \lambda)(4\lambda\sqrt{\gamma})^{-1} Y_3,$$

 $U(Y_5, Y_7) = k(1 - \lambda)(4\lambda\sqrt{\gamma})^{-1} Y_6,$
 $U(Y_6, Y_7) = k(\lambda - 1)(4\lambda\sqrt{\gamma})^{-1} Y_5,$
 $U(Y_i, Y_j) = 0$, otherwise.

By the help of (2.1), (2.7) and (2.8), we have
$$\alpha(Y_i,Y_i) = 0, \quad (i=1,2,\cdots,7),$$

$$\alpha(Y_1,Y_2) = (k+l)(4\lambda\sqrt{\gamma})^{-1} Y_7,$$

$$\alpha(Y_1,Y_3) = -(4\sqrt{3\lambda})^{-1} Y_5, \qquad \alpha(Y_1,Y_4) = -(4\sqrt{3\lambda})^{-1} Y_6,$$

$$\alpha(Y_1,Y_5) = (4\sqrt{3\lambda})^{-1} Y_3, \qquad \alpha(Y_1,Y_6) = (4\sqrt{3\lambda})^{-1} Y_4,$$

$$\alpha(Y_1,Y_7) = -(k+l)(4\lambda\sqrt{\gamma})^{-1} Y_2,$$

$$\alpha(Y_2,Y_3) = (4\sqrt{3\lambda})^{-1} Y_6, \qquad \alpha(Y_2,Y_4) = -(4\sqrt{3\lambda})^{-1} Y_5,$$

$$(2.9) \quad \alpha(Y_2, Y_5) = (4\sqrt{3\lambda})^{-1} Y_4, \qquad \alpha(Y_2, Y_6) = -(4\sqrt{3\lambda})^{-1} Y_3,$$

$$\alpha(Y_2, Y_7) = (k+l)(4\lambda\sqrt{\gamma})^{-1} Y_1,$$

$$\alpha(Y_3, Y_4) = l(4\lambda\sqrt{\gamma})^{-1} Y_7, \qquad \alpha(Y_3, Y_5) = -(4\sqrt{3\lambda})^{-1} Y_1,$$

$$\alpha(Y_3, Y_6) = (4\sqrt{3\lambda})^{-1} Y_2, \qquad \alpha(Y_3, Y_7) = -l(4\lambda\sqrt{\gamma})^{-1} Y_4,$$

$$\alpha(Y_4, Y_5) = -(4\sqrt{3\lambda})^{-1} Y_2, \qquad \alpha(Y_4, Y_6) = -(4\sqrt{3\lambda})^{-1} Y_1,$$

$$\alpha(Y_4, Y_7) = l(4\lambda\sqrt{\gamma})^{-1} Y_3, \qquad \alpha(Y_5, Y_6) = -k(4\lambda\sqrt{\gamma})^{-1} Y_7,$$

$$\alpha(Y_5, Y_7) = k(4\lambda\sqrt{\gamma})^{-1} Y_6, \qquad \alpha(Y_6, Y_7) = -k(4\lambda\sqrt{\gamma})^{-1} Y_5,$$

From (2.3),(2.7) and (2.9), we get

$$R(Y_2, Y_1)Y_1 = \{16\gamma\lambda - 9(k+l)^2\}(48\gamma\lambda^2)^{-1} Y_2,$$

$$(2.10) \quad R(Y_3, Y_1)Y_1 = (48\lambda)^{-1} Y_3, \qquad R(Y_4, Y_1)Y_1 = (48\lambda)^{-1} Y_4,$$

$$R(Y_5, Y_1)Y_1 = (48\lambda)^{-1} Y_5, \qquad R(Y_6, Y_1)Y_1 = (48\lambda)^{-1} Y_6,$$

$$R(Y_7,Y_1)Y_1 = (k+l)^2(16\gamma\lambda^2)^{-1} Y_7,$$

$$R(Y_1,Y_2)Y_2 = \{16\gamma\lambda - 9(k+l)^2\}\{(48\gamma\lambda^2)^{-1} Y_1,$$

$$R(Y_3,Y_2)Y_2 = (48\lambda)^{-1} Y_3, \qquad R(Y_4,Y_2)Y_2 = (48\lambda)^{-1} Y_4,$$

$$R(Y_5,Y_2)Y_2 = (48\lambda)^{-1} Y_5, \qquad R(Y_6,Y_2)Y_2 = (48\lambda)^{-1} Y_6,$$

$$R(Y_7,Y_2)Y_2 = (k+l)^2(16\gamma\lambda^2)^{-1} Y_7,$$

$$R(Y_1,Y_3)Y_3 = (48\lambda)^{-1} Y_1, \qquad R(Y_2,Y_3)Y_3 = (48\lambda)^{-1} Y_2,$$

$$R(Y_4,Y_3)Y_3 = (16\gamma\lambda - 9l^2)(48\gamma\lambda^2)^{-1} Y_4,$$

$$R(Y_5,Y_3)Y_3 = (48\lambda)^{-1} Y_5, \qquad R(Y_6,Y_3)Y_3 = (48\lambda)^{-1} Y_6,$$

$$R(Y_7,Y_3)Y_3 = l^2(16\gamma\lambda^2)^{-1} Y_7, \qquad R(Y_1,Y_4)Y_4 = (48\lambda)^{-1} Y_1,$$

$$R(Y_2,Y_4)Y_4 = (48\lambda)^{-1} Y_2,$$

$$R(Y_3,Y_4)Y_4 = (16\gamma\lambda - 9l^2)(48\gamma\lambda^2)^{-1} Y_3,$$

$$R(Y_5,Y_4)Y_4 = l^2(16\gamma\lambda^2)^{-1} Y_7, \qquad R(Y_1,Y_5)Y_5 = (48\lambda)^{-1} Y_1,$$

$$R(Y_2,Y_5)Y_5 = (48\lambda)^{-1} Y_2, \qquad R(Y_3,Y_5)Y_5 = (48\lambda)^{-1} Y_3,$$

$$R(Y_4,Y_5)Y_5 = (48\lambda)^{-1} Y_4,$$

$$R(Y_6,Y_5)Y_5 = (16\gamma\lambda - 9k^2)(48\gamma\lambda^2)^{-1} Y_6,$$

$$R(Y_7,Y_5)Y_5 = k^2(16\gamma\lambda^2)^{-1} Y_7, \qquad R(Y_1,Y_6)Y_6 = (48\lambda)^{-1} Y_1,$$

$$R(Y_2,Y_6)Y_6 = (48\lambda)^{-1} Y_2, \qquad R(Y_3,Y_6)Y_6 = (48\lambda)^{-1} Y_3,$$

$$R(Y_4,Y_6)Y_6 = (48\lambda)^{-1} Y_4,$$

$$R(Y_5,Y_6)Y_6 = (16\gamma\lambda - 9k^2)(48\gamma\lambda^2)^{-1} Y_5,$$

$$R(Y_7,Y_6)Y_6 = (48\lambda)^{-1} Y_4,$$

$$R(Y_7,Y_7)Y_7 = (k+l)^2(16\gamma\lambda^2)^{-1} Y_5,$$

$$R(Y_7,Y_7)Y_7 = (k+l)^2(16\gamma\lambda^2)^{-1} Y_2,$$

$$R(Y_3,Y_7)Y_7 = l^2(16\gamma\lambda^2)^{-1} Y_3, \qquad R(Y_4,Y_7)Y_7 = l^2(16\gamma\lambda^2)^{-1} Y_4,$$

$$R(Y_5,Y_7)Y_7 = k^2(16\gamma\lambda^2)^{-1} Y_5, \qquad R(Y_6,Y_7)Y_7 = k^2(16\gamma\lambda^2)^{-1} Y_6,$$

$$R(Y_7,Y_7)Y_7 = k^2(16\gamma\lambda^2)^{-1} Y_5, \qquad R(Y_6,Y_7)Y_7 = k^2(16\gamma\lambda^2)^{-1} Y_6,$$

$$R(Y_7,Y_7)Y_7 = k^2(16\gamma\lambda^2)^{-1} Y_5, \qquad R(Y_6,Y_7)Y_7 = k^2(16\gamma\lambda^2)^{-1} Y_6,$$

$$R(Y_7,Y_7)Y_7 = k^2(16\gamma\lambda^2)^{-1} Y_5, \qquad R(Y_6,Y_7)Y_7 = k^2(16\gamma\lambda^2)^{-1} Y_6,$$

In general, the Ricci tensor field Ric of type (0,2) on a Riemannian manifold (M,g) is defined by

$$(2.11) \quad Ric(Y,Z) = Trace \ \{X \mapsto R(X,Y)Z\}, \quad (X,Y,Z \in \mathfrak{X}(M)).$$

From (2.10), we obtain

Theorem 2.1. The Ricci tensor on $(SU(3)/T(k,l), g_{\lambda}), (k,l) \in \mathbb{R}^2 (|k| + |l| \neq 0)$, is given by

- (a) $Ric(Y_i, Y_j) = 0, \quad (i \neq j),$
- (b) $r_1 := Ric(Y_1, Y_1) = Ric(Y_2, Y_2) = \{10\gamma\lambda 3(k+l)^2\}/(24\gamma\lambda^2),$
- (c) $r_2 := Ric(Y_3, Y_3) = Ric(Y_4, Y_4) = (10\gamma\lambda 3l^2)/(24\gamma\lambda^2),$
- (d) $r_3 := Ric(Y_5, Y_5) = Ric(Y_6, Y_6) = (10\gamma\lambda 3k^2)/(24\gamma\lambda^2),$
- (e) $r_4 := Ric(Y_7, Y_7) = 1/(4\lambda^2)$, where $\gamma = k^2 + kl + l^2$.

A Riemannian homogeneous space (G/H,g) is called a normal homogeneous manifold if the metric g is induced from an Ad(G)-invariant inner product $(\ ,\)$ on the Lie algebra $\mathfrak g$ such that $T_eG=\mathfrak g=\mathfrak h+\mathfrak m$ and $(\mathfrak h,\mathfrak m)=0$. The Ricci curvature r of a Riemannian manifold (M,g) with respect to a nonzero vector $v\in TM$ is defined by $r(v):=Ric(v,v)/\|v\|^2$, and a manifold of constant Ricci curvature, (i.e., Ric=cg for some constant c), is called an Einstein manifold.

If $(SU(3)/T(k,l), g_{\lambda})$, $(k,l) \in \mathbb{R}^2$ $(|k|+|l|\neq 0)$, is a normal homogeneous manifold, then $\lambda=1$.

From Theorem 2.1, we obtain the following

Corollary 2.2. For each $(k,l) \in \mathbb{R}^2$ $(|k| + |l| \neq 0)$, any normal homogeneous manifold SU(3)/T(k,l) is not an Einstein manifold.

Furthermore, from Theorem 2.1, we have

Corollary 2.3. The Ricci curvature r on the Riemannian homogeneous space $(SU(3)/T(k,l), g_{\lambda}), (k,l) \in \mathbb{R}^2 (|k| + |l| \neq 0),$ is estimated as follows:

(a) if k > l > 0 and $\lambda > (9k^2 + 12kl + 9l^2)/10(k^2 + kl + l^2)$, then $r_4 < r \le r_2$.

(b) if
$$k = l$$
 and $\lambda > 1$, then $1/(4\lambda^2) \le r \le (10\lambda - 1)/(24\lambda^2)$.

The trace of the Ricci tensor field Ric of a Riemannian manifold (M, g), (i.e., $\sum_{j} Ric(e_{j}, e_{j})$, where $\{e_{j}\}_{j}$ is an (locally defined) orthonormal frame on (M, g), is called the *scalar curvature* of (M, g).

By the help of Theorem 2.1, we get the following

Theorem 2.4. The scalar curvature $S(g_{\lambda})$ on $(SU(3)/T(k,l), g_{\lambda})$, $(k, l \in \mathbb{R}, |k| + |l| \neq 0)$, is given by

(2.12)
$$S(g_{\lambda}) = (10\lambda - 1)/(4\lambda^2).$$

From Theorem 2.4, we obtain the following

Corollary 2.5. The scalar curvature $S(g_{\lambda})$ on $(SU(3)/T(k,l), g_{\lambda})$, $(k, l \in \mathbb{R}, |k| + |l| \neq 0)$, is estimated as follows:

- (a) $S(g_{\lambda}) > 0$ if and only if $\lambda > 1/10$,
- (b) $S(g_{\lambda}) = 0$ if and only if $\lambda = 1/10$,
- (c) $S(q_{\lambda}) < 0$ if and only if $\lambda < 1/10$.

Corollary 2.6. For each $(k,l) \in \mathbb{R}^2$ $(|k| + |l| \neq 0)$, the scalar curvature of the normal homogeneous Riemannian manifold SU(3)/T(k,l) is 9/4.

References

- [1] S. Aloff and N. R. Wallach, An infinite family of distinct 7-manifolds admitting positively Riemannian metrics, Bull. Amer. Math. Soc. 81 (1975), 93-97.
- [2] A. L. Besse, Einstein Manifolds, Springer Verlag (1987).
- [3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, 1963; Vol. 2, 1969, John Wiley and Sons, New York.
- [4] M. Kreck and S. Stolz, Some nondiffeomorphic homogeneous 7-manifolds with positive sectional curvature, J. Differential Geom. 33 (1991), 465-486.
- [5] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- [6] J.-S. Park, Stability of the identity map of SU(3)/T(k,l), Tokyo J. Math. 17(2) (1994), 281-289.
- [7] J.-S. Park, Ricci curvatures on SU(3)/T(k,l), to appear.

- [8] H. Urakawa, Numerical computation of the spectra of the Laplacian on 7-dimensional homogeneous manifolds $SU(3)/T_{k,l}$, SIAM J. Math. Anal. 15 (1984), 979-987.
- [9] H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian manifold, Compositio Math. 59 (1986), 57-71.
- [10] N. Wallach, Harmonic Analysis on Homogeneous Spaces, Dekker, New York, 1973.
- [11] M. Y. Wang, Some examples of homogeneous Einstein manifolds in dimension seven, Duke Math. J. 49 (1982), 23-28.

Yong-Soo Pyo

Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea.

E-mail: yspyo@pknu.ac.kr

Hyun-Ju Shin

Department of Applied Mathematics, Pukyong National University, Busan 608-737, Korea.

E-mail: shjjhs99@nate.com

Joon-Sik Park

Department of Mathematics, Pusan University of Foreign Studies, Busan 608-738, Korea.

E-mail: iohpark@pufs.ac.kr