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SCALAR CURVATURES ON SU(3)/T (k, l)

Yong-Soo Pyo∗, Hyun-Ju Shin, and Joon-Sik Park

Abstract. In this paper, we estimated the Ricci curvature and

the scalar curvature on SU(3)/T (k, l) under the condition (k, l) ∈
R2 (|k| + |l| 6= 0), where the four isotropy irreducible representa-

tions in SU(3)/T (k, l) are, not necessarily, mutually equivalent or

inequivalent.

1. Introduction

Geometric properties on SU(3)/T (k, l) have been investigated under

the condition k, l ∈ Z (|k|+ |l| 6= 0), so far. In this paper, we estimate

scalar curvatures of Riemannian homogeneous spaces SU(3)/T (k, l) for

(k, l) ∈ R2 (|k|+ |l| 6= 0).

The results of the studies on the family of the homogeneous spaces

SU(3)/T (k, l) k, l ∈ Z (|k|+ |l| 6= 0) are famous:

(i) M. Kreck and S. Stolz (cf. [4]) showed that among the family

7-dimensional homogeneous spaces {SU(3)/T (k, l) | k, l ∈ Z which are

mutually prime}, there exist two Riemannian manifolds which are ho-

meomorphic but not diffeomorphic.

(ii) For all (k, l), SU(3)/T (k, l) admits a positively curved SU(3)-

invariant Riemannian metric (cf. [1]).

(iii) SU(3)/T (k, l) for each (k, l) admits a SU(3)-invariant Einstein

metric (cf. [11]).
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(iv) The identity map of SU(3)/T (k, l) for each (k, l) which is normal

homogeneous is stable as a harmonic map (cf. [6]).

(v) The spectrum of the Laplacian of the metric in (ii) is determined

(cf. [8, 9]).

Not under the condition (k, l) ∈ Z2 (|k| + |l| 6= 0), the studies on

the family of the homogeneous spaces SU(3)/T (k, l) are rarely ever

seen. Recently, one of the present authors (cf. [7]) obtained a nec-

essary and sufficient condition for four isotropy irreducible representa-

tions in SU(3)/T (k, l) to be mutually inequivalent, under the condition

(k, l) ∈ R2 (|k| + |l| 6= 0). And then, under this inequivalent condition,

he estimated the Ricci and scalar curvatures on SU(3)/T (k, l).

In this paper, we do not assume that four isotropy irreducible rep-

resentations in SU(3)/T (k, l) are, not necessarily, either equivalent or

inequivalent. But, we assume that (k, l) ∈ R2 (|k|+|l| 6= 0). Under these

conditions, we estimate the Ricci curvature and the scalar curvature on

SU(3)/T (k, l) with a SU(3)-invariant Riemannian metric.

2. Scalar curvatures on SU(3)/T (k, l)

2.1. The curvature tensor field on a homogeneous Riemann-

ian space

Let G be a compact connected semisimple Lie group and H a closed

subgroup of G. We denote by g and h the corresponding Lie algebras of

G andH, respectively. Let B be the negative of the Killing form of g. We

consider the Ad(H )-invariant decomposition g = h+m with B(h,m) = 0.

Then the set of G-invariant symmetric covariant 2-tensor fields on G/H

can be identified with the set of Ad(H)-invariant symmetric bilinear

forms on m. In particular, the set of G-invariant Riemannian metrics on

G/H is identified with the set of Ad(H)-invariant inner products on m

(cf. [2, 3, 6, 7]).
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Let < , > be an inner product which is invariant with respect to

Ad(H) on m, where Ad denotes the adjoint representation of H in g.

This inner product < , > determines a G-invariant Riemannian metric

g<,> on G/H.

For the sake of the calculus, we take a neighborhood V of the identity

element e in G and a subset N (resp. NH) of G (resp. H) in such a way

that

(i) N = V ∩ exp(m), NH = V ∩ exp(h),

(ii) the map N ×NH 3 (c, h) 7−→ ch ∈ N ·NH is a diffeomorphism,

(iii) the projection π of G onto G/H is a diffeomorphism of N onto

a neighborhood π(N) of the origin {H} in G/H.

Here, {exp(tX)|t ∈ R} for X ∈ g is a 1-parameter subgroup of G.

Now for an element X ∈ m, we define a vector field X∗ on the neigh-

borhood π(N) of {H} in G/H by

X∗π(c) := (τc)∗X{H} ∈ Tπ(c)G/H, (c ∈ N),

where τc denotes the transformation of G/H which is induced by c. Let

{Xi}i be an orthonormal basis of the inner product space (m, < , >).

Then {X∗i }i is an orthonormal frame on π(N)(⊂ G/H).

On the other hand, the connection function α (cf. [5, p.43]) on m×m

corresponding to the invariant Riemannian connection of (G/H, g<,>)

is given as follows (cf. [5, p.52]):

(2.1) α(X,Y ) =
1

2
[X,Y ]m + U(X,Y ), (X,Y ∈ m) ,

where U(X,Y ) is determined by

(2.2) 2 < U(X,Y ), Z > = < [Z,X]m, Y > + < X, [Z, Y ]m >

for X,Y and Z ∈ m, and Xm denotes the m-component of an element

X ∈ g = h+m. Let ∇ be the Levi-Civita connection on the Riemannian

manifold (G/H, g<,>). Then on π(N) (∇X∗Y ∗){H} = α(X,Y ) (X,Y ∈
m). Moreover, the expression for the value at po := {H}(∈ G/H) of the

curvature tensor field is as follows (cf. [5, p.47]):
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(2.3)
R(X,Y )Z = α(X,α(Y,Z))− α(Y, α(X,Z))

− α([X,Y ]m, Z)− [[X,Y ]h, Z], (X,Y, Z ∈ m),

where Xh denotes the h-component of an element X ∈ g = h + m.

2.2. Ricci curvatures on SU(3)/T (k, l)

In this subsection, we use the following notations.

G = SU(3), g : the Lie algebra of SU(3), i =
√
−1,

T = T (k, l) = {diag[e2πikθ, e2πilθ, e−2πi(k+l)θ|θ ∈ R} for (k, l) ∈ R2 and

|k|+ |l| 6= 0,

t(k, l) : the Lie algebra of T (k, l),

(X,Y ) = B(X,Y ) = −6 Trace(XY ) : the negative of the Killing form

of g.

Let Eij be a real 3× 3 matrix with 1 on entry (i, j) and 0 elsewhere.

And we put

(2.4)



X1 = (E12 − E21)/
√

12, X2 = i(E12 + E21)/
√

12,

X3 = (E13 − E31)/
√

12, X4 = i(E13 + E31)/
√

12,

X5 = (E23 − E32)/
√

12, X6 = i(E23 + E32)/
√

12,

X7 = i diag[(k + 2l),−(2k + l), (k − l)]/
√

36γ,

X8 = i diag[k, l,−(k + l)]/
√

12γ,

where γ = k2 + kl + l2. Then

(2.5) {X1, · · · , X7} (resp. {X8})

is an orthonormal basis of m (resp. t(k, l)) with respect to (· , ·) such

that

g = m + t(k, l) and (m, t(k, l)) = 0.

If we put {X1, X2}R= m1, {X3, X4}R= m2, {X5, X6}R= m3, and {X7}R=

m4, then mi are irreducible Ad(T )-representations.
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Now, we take another Ad(T )-invariant inner product < , > on m such

that

(2.6) {Xi/
√
λ =: Yi, (i = 1, 2, · · · , 6), X7 =: Y7}

is an orthonormal basis of m with respect to < , >. This inner product <

, > determines a G-invariant Riemannian metric gλ on the homogeneous

space G/T . Then from (2.6), we obtain

(2.7)

[Y1, Y2] = (k + l)(2λ
√
γ)−1 Y7 + (k − l)(2λ

√
3γ)
−1

X8,

[Y1, Y3] = −(2
√

3λ)
−1

Y5, [Y1, Y4] = −(2
√

3λ)
−1

Y6,

[Y1, Y5] = (2
√

3λ)
−1

Y3, [Y1, Y6] = (2
√

3λ)
−1

Y4,

[Y1, Y7] = −(k + l)(2
√
γ)−1 Y2,

[Y1, X8] = −(k − l)(2
√

3γ)
−1

Y2,

[Y2, Y3] = (2
√

3λ)
−1

Y6, [Y2, Y4] = −(2
√

3λ)
−1

Y5,

[Y2, Y5] = (2
√

3λ)
−1

Y4, [Y2, Y6] = −(2
√

3λ)
−1

Y3,

[Y2, Y7] = (k + l)(2
√
γ)−1 Y1, [Y2, X8] = (k − l)(2

√
3γ)
−1

Y1,

[Y3, Y4] = l(2λ
√
γ)−1 Y7 + (2k + l)(2λ

√
3γ)
−1

X8,

[Y3, Y5] = −(2
√

3λ)
−1

Y1, [Y3, Y6] = (2
√

3λ)
−1

Y2,

[Y3, Y7] = −l(2√γ)−1 Y4,

[Y3, X8] = −(2k + l)(2
√

3γ)
−1

Y4,

[Y4, Y5] = −(2
√

3λ)
−1

Y2, [Y4, Y6] = −(2
√

3λ)
−1

Y1,

[Y4, Y7] = l(2
√
γ)−1 Y3, [Y4, X8] = (2k + l)(2

√
3γ)
−1

Y3,

[Y5, Y6] = −k(2λ
√
γ)−1 Y7 + (k + 2l)(2λ

√
3γ)
−1

X8,

[Y5, Y7] = k(2
√
γ)−1 Y6,

[Y5, X8] = −(k + 2l)(2
√

3γ)
−1

Y6,

[Y6, Y7] = −k(2
√
γ)−1 Y5, [Y6, X8] = (k + 2l)(2

√
3γ)
−1

Y5,

[Y7, X8] = 0.
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From (2.2) and (2.7), we get

(2.8)

U(Y1, Y7) = (k + l)(λ− 1)(4λ
√
γ)−1 Y2,

U(Y2, Y7) = (k + l)(1− λ)(4λ
√
γ)−1 Y1,

U(Y3, Y7) = l(λ− 1)(4λ
√
γ)−1 Y4,

U(Y4, Y7) = l(1− λ)(4λ
√
γ)−1 Y3,

U(Y5, Y7) = k(1− λ)(4λ
√
γ)−1 Y6,

U(Y6, Y7) = k(λ− 1)(4λ
√
γ)−1 Y5,

U(Yi, Yj) = 0, otherwise.

By the help of (2.1), (2.7) and (2.8), we have

(2.9)

α(Yi, Yi) = 0, (i = 1, 2, · · · , 7),

α(Y1, Y2) = (k + l)(4λ
√
γ)−1 Y7,

α(Y1, Y3) = −(4
√

3λ)−1 Y5, α(Y1, Y4) = −(4
√

3λ)−1 Y6,

α(Y1, Y5) = (4
√

3λ)−1 Y3, α(Y1, Y6) = (4
√

3λ)−1 Y4,

α(Y1, Y7) = −(k + l)(4λ
√
γ)−1 Y2,

α(Y2, Y3) = (4
√

3λ)−1 Y6, α(Y2, Y4) = −(4
√

3λ)−1 Y5,

α(Y2, Y5) = (4
√

3λ)−1 Y4, α(Y2, Y6) = −(4
√

3λ)−1 Y3,

α(Y2, Y7) = (k + l)(4λ
√
γ)−1 Y1,

α(Y3, Y4) = l(4λ
√
γ)−1 Y7, α(Y3, Y5) = −(4

√
3λ)−1 Y1,

α(Y3, Y6) = (4
√

3λ)−1 Y2, α(Y3, Y7) = −l(4λ√γ)−1 Y4,

α(Y4, Y5) = −(4
√

3λ)−1 Y2, α(Y4, Y6) = −(4
√

3λ)−1 Y1,

α(Y4, Y7) = l(4λ
√
γ)−1 Y3, α(Y5, Y6) = −k(4λ

√
γ)−1 Y7,

α(Y5, Y7) = k(4λ
√
γ)−1 Y6, α(Y6, Y7) = −k(4λ

√
γ)−1 Y5.

From (2.3),(2.7) and (2.9), we get

(2.10)

R(Y2, Y1)Y1 = {16γλ−9(k + l)2}(48γλ2)−1 Y2,

R(Y3, Y1)Y1 = (48λ)−1 Y3, R(Y4, Y1)Y1 = (48λ)−1 Y4,

R(Y5, Y1)Y1 = (48λ)−1 Y5, R(Y6, Y1)Y1 = (48λ)−1 Y6,
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(2.10)

R(Y7, Y1)Y1 = (k + l)2(16γλ2)−1 Y7,

R(Y1, Y2)Y2 = {16γλ−9(k + l)2}(48γλ2)−1 Y1,

R(Y3, Y2)Y2 = (48λ)−1 Y3, R(Y4, Y2)Y2 = (48λ)−1 Y4,

R(Y5, Y2)Y2 = (48λ)−1 Y5, R(Y6, Y2)Y2 = (48λ)−1 Y6,

R(Y7, Y2)Y2 = (k + l)2(16γλ2)−1 Y7,

R(Y1, Y3)Y3 = (48λ)−1 Y1, R(Y2, Y3)Y3 = (48λ)−1 Y2,

R(Y4, Y3)Y3 = (16γλ− 9l2)(48γλ2)
−1

Y4,

R(Y5, Y3)Y3 = (48λ)−1 Y5, R(Y6, Y3)Y3 = (48λ)−1 Y6,

R(Y7, Y3)Y3 = l2(16γλ2)−1 Y7, R(Y1, Y4)Y4 = (48λ)−1 Y1,

R(Y2, Y4)Y4 = (48λ)−1 Y2,

R(Y3, Y4)Y4 = (16γλ− 9l2)(48γλ2)
−1

Y3,

R(Y5, Y4)Y4 = (48λ)−1 Y5, R(Y6, Y4)Y4 = (48λ)−1 Y6,

R(Y7, Y4)Y4 = l2(16γλ2)−1 Y7, R(Y1, Y5)Y5 = (48λ)−1 Y1,

R(Y2, Y5)Y5 = (48λ)−1 Y2, R(Y3, Y5)Y5 = (48λ)−1 Y3,

R(Y4, Y5)Y5 = (48λ)−1 Y4,

R(Y6, Y5)Y5 = (16γλ−9k2)(48γλ2)
−1

Y6,

R(Y7, Y5)Y5 = k2(16γλ2)
−1

Y7, R(Y1, Y6)Y6 = (48λ)−1 Y1,

R(Y2, Y6)Y6 = (48λ)−1 Y2, R(Y3, Y6)Y6 = (48λ)−1 Y3,

R(Y4, Y6)Y6 = (48λ)−1 Y4,

R(Y5, Y6)Y6 = (16γλ−9k2)(48γλ2)
−1

Y5,

R(Y7, Y6)Y6 = k2(16γλ2)
−1

Y7,

R(Y1, Y7)Y7 = (k + l)2(16γλ2)
−1

Y1,

R(Y2, Y7)Y7 = (k + l)2(16γλ2)
−1

Y2,

R(Y3, Y7)Y7 = l2(16γλ2)
−1

Y3, R(Y4, Y7)Y7 = l2(16γλ2)
−1

Y4,

R(Y5, Y7)Y7 = k2(16γλ2)
−1

Y5, R(Y6, Y7)Y7 = k2(16γλ2)
−1

Y6.
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In general, the Ricci tensor field Ric of type (0,2) on a Riemannian

manifold (M, g) is defined by

(2.11) Ric(Y,Z) = Trace {X 7→ R(X,Y )Z}, (X,Y, Z ∈ X(M)).

From (2.10), we obtain

Theorem 2.1. The Ricci tensor on (SU(3)/T (k, l), gλ), (k, l) ∈
R2 (|k|+ |l| 6= 0), is given by

(a) Ric(Yi, Yj) = 0, (i 6= j),

(b) r1 := Ric(Y1, Y1) = Ric(Y2, Y2) = {10γλ− 3(k + l)2}/(24γλ2),

(c) r2 := Ric(Y3, Y3) = Ric(Y4, Y4) = (10γλ− 3l2)/(24γλ2),

(d) r3 := Ric(Y5, Y5) = Ric(Y6, Y6) = (10γλ− 3k2)/(24γλ2),

(e) r4 := Ric(Y7, Y7) = 1/(4λ2),

where γ = k2 + kl + l2.

A Riemannian homogeneous space (G/H, g) is called a normal ho-

mogeneous manifold if the metric g is induced from an Ad(G)-invariant

inner product ( , ) on the Lie algebra g such that TeG = g = h+m and

(h,m) = 0. The Ricci curvature r of a Riemannian manifold (M, g) with

respect to a nonzero vector v ∈ TM is defined by r(v) := Ric(v, v)/‖v‖2,
and a manifold of constant Ricci curvature, (i.e., Ric = cg for some con-

stant c), is called an Einstein manifold.

If (SU(3)/T (k, l), gλ), (k, l) ∈ R2 (|k|+ |l| 6= 0), is a normal homoge-

neous manifold, then λ = 1.

From Theorem 2.1, we obtain the following

Corollary 2.2. For each (k, l) ∈ R2 (|k| + |l| 6= 0), any normal

homogeneous manifold SU(3)/T (k, l) is not an Einstein manifold.

Furthermore, from Theorem 2.1, we have

Corollary 2.3. The Ricci curvature r on the Riemannian homoge-

neous space (SU(3)/T (k, l), gλ), (k, l) ∈ R2 (|k| + |l| 6= 0), is estimated

as follows:

(a) if k > l > 0 and λ > (9k2 + 12kl + 9l2)/10(k2 + kl + l2), then

r4 ≤ r ≤ r2.
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(b) if k = l and λ > 1, then 1/(4λ2) ≤ r ≤ (10λ− 1)/(24λ2).

The trace of the Ricci tensor field Ric of a Riemannian manifold

(M, g), (i.e.,
∑

j Ric(ej , ej), where {ej}j is an (locally defined) orthonor-

mal frame on (M, g)), is called the scalar curvature of (M, g).

By the help of Theorem 2.1, we get the following

Theorem 2.4. The scalar curvature S(gλ) on (SU(3)/T (k, l), gλ),

(k, l ∈ R, |k|+ |l| 6= 0), is given by

(2.12) S(gλ) = (10λ− 1)/(4λ2).

From Theorem 2.4, we obtain the following

Corollary 2.5. The scalar curvature S(gλ) on (SU(3)/T (k, l), gλ),

(k, l ∈ R, |k|+ |l| 6= 0), is estimated as follows:

(a) S(gλ) > 0 if and only if λ > 1/10,

(b) S(gλ) = 0 if and only if λ = 1/10,

(c) S(gλ) < 0 if and only if λ < 1/10.

Corollary 2.6. For each (k, l) ∈ R2 (|k| + |l| 6= 0), the scalar cur-

vature of the normal homogeneous Riemannian manifold SU(3)/T (k, l)

is 9/4.
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