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INTERVAL-VALUED FUZZY SUBGROUPS AND

HOMOMORPHISMS

Hee Won Kang

Abstract. We obtain the interval-valued fuzzy subgroups gener-
ated by interval-valued fuzzy sets and some properties preserved by
a ring homomorphism. Furthermore, we introduce the concepts of
interval-valued fuzzy coset and study some of it’s properties.

1. Introduction

In 1975, Zadeh[8] introduced the concept of interval-valued fuzzy sets
as a generalization of fuzzy sets introduced by himself[7]. After then,
Biswas[1] applied the notion of interval-valued fuzzy sets to group the-
ory. Moreover, Gorzalczany[3] applied it to a method of inference in
approximate reasoning, and Montal and Samanta[6] applied it to topol-
ogy. Recently, Hur et al.[4] introduced the concept of an interval-valued
fuzzy relations and obtained some of it’s properties . Also, Choi et al.[2]
applied it to topology in the sense of Šostak, Kang and Hur [5] applied
it to algebra.

In this paper, we introduce the notion of interval-valued fuzzy cosets
and investigate some of it’s properties. Furthermore we obtain the
interval-valued fuzzy subgroups generated by interval-valued fuzzy sets
and study some properties preserved by a ring homomorphism.

2. Preliminaries

We will list some concepts and two results needed in the later sections.
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Let D(I) be the set of all closed subintervals of the unit interval
I = [0, 1]. The elements of D(I) are generally denoted by capital letters
M,N, · · ·, and note that M = [ML,MU ], where ML and MU are the
lower and the upper end points respectively. Especially, we denoted , 0
= [0, 0], 1 = [1, 1], and a=[a, a] for every a ∈ (0, 1), We also note that

(i) (∀M,N ∈ D(I)) (M = N ⇔ML = NL,MU = NU ),

(ii) (∀M,N ∈ D(I)) (M ≤ N ⇔ML ≤ NL,MU ≤ NU ).

For every M ∈ D(I), the complement of M , denoted by M c, is defined
by M c = 1−M = [1−MU , 1−ML](See[6]).

Definition 2.1[3,8]. A mapping A : X → D(I) is called an interval -
valued fuzzy set (in short, IVFS) in X, denoted by A = [AL, AU ], if
AL, AU ∈ IX such that AL ≤ AU , i .e., AL(x) ≤ AU (x) for each
x ∈ X, where AL(x)[resp. AU (x)] is called the lower [resp. upper ]
end point of x to A. For any [a, b] ∈ D(I), the interval-valued fuzzy
set A in X defined by A(x) = [AL(x), AU (x)] = [a, b] for each x ∈ X is

denoted by ˜[a, b] and if a = b, then the IVFS ˜[a, b] is denoted by simply

ã. In particular, 0̃ and 1̃ denote the interval -valued fuzzy empty set and
the interval -valued fuzzy whole set in X, respectively.

We will denote the set of all IVFSs in X as D(I)X . It is clear that
set A = [AL, AU ] ∈ D(I)X for each A ∈ IX .

Definition 2.2[6]. An IVFS A is called an interval -valued fuzzy point(in
short, IVFP) in X with the support x ∈ X and the value [a, b] ∈ D(I)
with b > 0, denoted by A = x[a,b], if for each y ∈ X,

A(y) =

{
[a, b] if y = x,
0 otherwise.

In particular, if b = a, then x[a,b] is denoted by xa.

We will denote the set of all IVFPs in X as IVFP (X) .
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Definition 2.3[6]. Let A,B ∈ D(I)X and let {Aα}α∈Γ ⊂ D(I)X . Then:

(i) A ⊂ B iff AL ≤ BL and AU ≤ BU .

(ii) A = B iff A ⊂ B and B ⊂ A.

(iii) Ac = [1−AU , 1−AL].

(iv) A ∪B = [AL ∨BL, AU ∨BU ].

(iv)′
⋃
α∈Γ

Aα = [
∨
α∈Γ

ALα,
∨
α∈Γ

AUα ].

(v) A ∩B = [AL ∧BL, AU ∧BU ].

(v)′
⋂
α∈Γ

Aα = [
∧
α∈Γ

ALα,
∧
α∈Γ

AUα ].

Result 2.A[6,Theorem 1]. Let A,B,C ∈ D(I)X and let {Aα}α∈Γ ⊂
D(I)X . Then:

(a) 0̃ ⊂ A ⊂ 1̃.

(b) A ∪B = B ∪A , A ∩B = B ∩A.

(c) A ∪ (B ∪ C) = (A ∪B) ∪ C , A ∩ (B ∩ C) = (A ∩B) ∩ C.

(d) A,B ⊂ A ∪B , A ∩B ⊂ A,B.

(e) A ∩ (
⋃
α∈Γ

Aα) =
⋃
α∈Γ

(A ∩Aα).

(f) A ∪ (
⋂
α∈Γ

Aα) =
⋂
α∈Γ

(A ∪Aα).

(g) (0̃)c = 1̃ , (1̃)c = 0̃.

(h) (Ac)c = A.

(i) (
⋃
α∈Γ

Aα)c =
⋂
α∈Γ

Acα , (
⋂
α∈Γ

Aα)c =
⋃
α∈Γ

Acα.

Definition 2.4[7]. Let A ∈ D(I)X and let xM ∈ IVFP (X). Then:

(i) The set {x ∈ X : AU (x) > 0} is called the support of A and is
denoted by S(A).

(ii) xM said to belong to A, denoted by xM ∈ A, if ML ≤ AL(x)
and MU ≤ AU (x) for each x ∈ X.

It is obvious that A =
⋃

xM∈A
xM and xM ∈ A if and only if xML ∈ AL

and xMU ∈ AU .
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Definition 2.5[6]. Let f : X → Y be a mapping, let A = [AL, AU ]
∈ D(I)X and let B = [BL, BU ] ∈ D(I)Y . Then

(a) the image of A under f , denoted by f(A), is an IVFS in Y
defined as follows: For each y ∈ Y ,

f(AL)(y) =


∨
y=f(x)A

L(x) if f−1(y) 6= ∅,

0 otherwise.
and

f(AU )(y) =


∨
y=f(x)A

U (x) if f−1(y) 6= ∅,

0 otherwise.

(b) the preimage of B under f , denoted by f−1(B), is an IVFS
in Y defined as follows: For each y ∈ Y ,

f−1(BL)(y) = (BL ◦ f)(x) = BL(f(x))
and

f−1(BU )(y) = (BU ◦ f)(x) = BU (f(x)).

It can be easily seen that f(A) = [f(AL), f(AU )] and f−1(B) =
[f−1(BL), f−1(BU )].

Result 2.B[6, Theorem 2]. Let f : X → Y be a mapping and
g : Y → Z be a mapping. Then

(a) f−1(Bc) = (f−1(B))c , ∀B ∈ D(I)Y .
(b) [f(A)]c ⊂ f(Ac) , ∀A ∈ D(I)Y .
(c) B1 ⊂ B2 ⇒ f−1(B1) ⊂ f−1(B2), where B1, B2 ∈ D(I)Y .
(d) A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2), where A1, A2 ∈ D(I)X .
(e) f(f−1(B)) ⊂ B, ∀B ∈ D(I)Y .
(f) A ⊂ f(f−1(A)), ∀A ∈ D(I)Y .
(g) (g ◦ f)−1(C) = f−1(g−1(C)), ∀C ∈ D(I)Z .

(h) f−1(
⋃
α∈Γ

Bα) =
⋃
α∈Γ

f−1Bα, where {Bα}α∈Γ ∈ D(I)Y .

(h) f−1(
⋂
α∈Γ

Bα) =
⋂
α∈Γ

f−1Bα, where {Bα}α∈Γ ∈ D(I)Y .

Definition 2.6[5]. An interval-valued fuzzy set A in G is called an
interval -valued fuzzy subgroupoid(in short, IVGP) in G if

AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y), ∀x, y ∈ G.

It is clear that 0̃, 1̃ ∈ IVGP(G). We will denote the IVGPs in G as
IVGP(G).
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3. Interval-valued fuzzy subgroup generated by an interval-
valued fuzzy set

Definition 3.1[5]. Let A be an IVFS in a set X and let [λ, µ] ∈ D(I).

Then the set A[λ,µ] = {x ∈ X : AL(x) ≥ λ and AU (x) ≥ µ} is called a
[λ, µ]-level subset of A.

The following is the immediate result of Definition 3.1.

Proposition 3.2. Let A be an IVFS in a set X and let [λ1, µ1], [λ2, µ2] ∈
Im(A). If λ1 < λ2 and µ1 < µ2, then A[λ1,µ1] ⊃ A[λ2,µ2].

Definition 3.3[5]. Let G be a group and let A ∈ D(I)G. Then A is
called an interval -valued fuzzy subgroup (in short, IVG) of G if it satis-
fies the following conditions :

(i) A ∈ IVGP(G), i.e., AL(xy) ≥ AL(x) ∧ AL(y) and AU (xy) ≥
AU (x) ∧AU (y), ∀x, y ∈ G.

(ii) AL(x−1) ≥ AL(x) and AU (x−1) ≥ AU (x), ∀x, y ∈ G.

We will denote the set of all IVGs of G as IVG (G).

Result 3.A[1, Proposition 3.1]. Let A be an IVG of a group G.
Then A(x−1) = A(x) and AL(x) ≤ AL(e), AU (x) ≤ AU (e) for each
x ∈ G, where e is the identity element of G.

Result 3.B[5, Proposition 4.16 and 4.17]. Let A be an IVFS in a

group G. Then A ∈ IVG(G) if and only if A[λ,µ] is a subgroup of G for
each [λ, µ] ∈ Im(A).

Definition 3.4. Let A be an IVG of a group G and [λ, µ] ∈ Im(A).

Then the subgroup A[λ,µ] is called a [λ, µ]-level subgroup of A.

Lemma 3.5. Let A be any IVFS of a set X. Then AL(x) =
∨
{λ : x ∈

A[λ,µ]} and

AU (x) =
∨
{µ : x ∈ A[λ,µ]}, where x ∈ X and [λ, µ] ∈ D(I).

Proof. Let α =
∨
{λ : x ∈ A[λ,µ]}, let β =

∨
{µ : x ∈ A[λ,µ]}

and let ε > 0 be arbitrary. Then α − ε <
∨
{λ : x ∈ A[λ,µ]} and
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β − ε <
∨
{µ : x ∈ A[λ,µ]}. Thus there exist [λ, µ] ∈ D(I) such that

x ∈ A[λ,µ], α − ε < λ and β − ε < µ. Since x ∈ A[λ,µ], AL(x) ≥ λ and
AU (x) ≥ µ. Thus AL(x) > α− ε and AU (x) > β − ε. Since ε > 0 is ar-
bitrary, AL(x) ≥ α and AU (x) ≥ β. We now show that AL(x) ≤ α and
AU (x) ≤ β. Suppose AL(x) = t1 and AU (x) = t2. Then [t1, t2] ∈ Im(A).

Thus x ∈ A[t1,t2]. So t1 ∈ {λ : x ∈ A[λ,µ]} and t2 ∈ {λ : x ∈ A[λ,µ]}. So

t1 =
∨
{λ : x ∈ A[λ,µ]} and t2 =

∨
{µ : x ∈ A[λ,µ]}, i.e. AL(x) ≤ α and

AU (x) ≤ β. This completes the proof. �

We shall denote by (A) the IVG generated by the IVFS A in G. We

shall use the same notation (A[λ,µ]) for the ordinary subgroup of the

group G generated by the level subset A[λ,µ].

Theorem 3.6. Let G be group and let A ∈ D(I)G. Let A∗ ∈ D(I)G be
defined as follows: For each x ∈ G,

(A∗)L(x) =
∨
{λ : x ∈ (A[λ,µ])} and (A∗)U (x) =

∨
{µ : x ∈ (A[λ,µ])},

where [λ, µ] ∈ D(I). Then A∗ ∈ IVG(G) such that A∗ =
⋂
{B ∈

IVG(G): A ⊂ B}. In this case, A∗ is called the interval -valued fuzzy
subgroup generated by A in G and will be denoted by (A).

Proof. Let [t1, t2] ∈ Im (A∗) and α = t1− 1
n and α = t2− 1

n , where n is

any sufficiently large positive integer. Let x ∈ G. Suppose x ∈ A∗[t1,t2] .
Then (A∗)L(x) ≥ t1 and (A∗)U (x) ≥ t2. Thus there exist [λ, µ] ∈ D(I)

such that λ > α, µ > β and x ∈ A[λ,µ]. Since [α, β] < [λ, µ] and

[α, β] ∈ D(I), by Proposition 3.2, A[λ,µ] ⊂ A[α,β]. So x ∈ A[α,β], i.e.,

x ∈ (A[α,β]). Now suppose x ∈ (A[λ,µ]). Then α ∈ {λ : x ∈ (A[λ,µ])} and

β ∈ {µ : x ∈ (A[λ,µ])}. Thus α ≤
∨
{λ : x ∈ (A[λ,µ])} and β ≤

∨
{µ :

x ∈ (A[λ,µ])}. So t1 − 1
n ≤ (A∗)L(x) and t2 − 1

n ≤ (A∗)U (x), i.e., t1 ≤
(A∗)L(x) and t2 ≤ (A∗)U (x). Hence x ∈ A∗[t1,t2] , i.e.,(A∗

[α,β]
) ⊂ A∗[t1,t2] .

Therefore A∗
[t1,t2] = (A∗

[α,β]
). Since (A∗

[α,β]
) is a subgroup of G, A∗

[t1,t2]

is a subgroup of G. By Result 3.B, A∗ ∈ IVG(G).
Now, we show that A ⊂ A∗. Let x ∈ G. Then, by Lemma 3.5,

(A∗)L(x) =
∨
{λ : x ∈ A[λ,µ]} and (A∗)U (x) =

∨
{µ : x ∈ A[λ,µ]}. Thus

(A∗)L(x) ≤
∨
{λ : x ∈ (A[λ,µ])} and (A∗)U (x) ≤

∨
{µ : x ∈ (A[λ,µ])}. So

A ⊂ A∗. Finally, let B be any IVG of G such that A ⊂ B. We show

that A∗ ⊂ B. Let x ∈ G and A∗(x) = [t1, t2]. Then A∗
[t1,t2] = (A[α,β]),

where α = t1 − 1
n , β = t2 − 1

n , and n is any sufficiently large positive

integer. Thus x ∈ (A[α,β]). So x = a1a2 · · · am, where ai or a−1
i belongs

to A[α,β](i = 1, · · ·,m).



Interval-Valued Fuzzy Subgroups and Homomorphisms 505

On the other hand,

BL(x) = BL(a1a2 · · · am)

≥ BL(a1) ∧BL(a2) ∧ · · · ∧BL(am)

≥ AL(a1) ∧AL(a2) ∧ · · · ∧AL(am)

≥ α = t1 −
1

n
.

By the similar arguments, we have that BU (x) ≥ β = t2 − 1
n . Since

n is sufficiently large positive integer, BL(x) ≥ t1 and BU (x) ≥ t2. So
A∗ ⊂ B. Hence A∗ =

⋂
{B ∈IVG(G): A ⊂ B}. This completes the

proof. �

It is possible that card Im (A∗) be less than card Im (A). Moreover,
Im (A∗) need not be contained in Im (A) as shown in the following ex-
amples.

Example 3.7. let G = {e, a, b, c} be the Klein four -group, where
a2 = b2 = e and ab = ba. Define an IVFS A of G by: A(e) =
[0.5, 0.5], A(a) = [0.2, 0.8], A(b) = [0.3, 0.7], A(ab) = [0.4, 0.6]. Then

A[0.2,0.8] = {a}, A[0.3,0.7] = {a, b}, A[0.4,0.6] = {a, b, ab} and A[0.5,0.5] = G.

Thus (A[0.2,0.8]) = {e, a} and (A[0.3,0.7]) = G. Moreover, by definition,
we have A∗(e) = A∗(a) = [0.2, 0.8] and A∗(b) = A∗(ab) = [0.3, 0.7]. �

Now an attempt is made to obtain a necessary and sufficient condi-
tion for a p-group to be cyclic.

Lemma 3.8. Let G be a finite group. Suppose there exists A ∈ IVG(G)
satisfying the following conditions: For any x, y ∈ G,

(i) A(x) = A(y)⇒ (x) = (y).
(ii) AL(x) > AL(y) and AU (x) > AU (y)⇒ (x) ⊂ (y).

Then G is cyclic.

Proof. Suppose A is constant on G. Then A(x) = A(y) for any x, y ∈
G. By the condition (i), (x) = (y). So G = (x). Now suppose A is
not constant on G. Let Im (A) = {[t0, s0], [t1, s1], · · ·, [tn, sn]}, where
t0 > t1 > · · · > tn and s0 > s1 > · · · > sn. Then, by Proposition 3.2
and Result 3.B, we obtain the chain of level subgroups of A:

A[t0,s0] ⊂ A[t1,s1] ⊂ · · · ⊂ A[tn,sn] = G.
Let x ∈ G−A[tn−1,sn−1]. We show that G = (x). Let g ∈ G−A[tn−1,sn−1].
Since t0 > t1 > · · · > tn and s0 > s1 > · · · > sn, A(g) = A(x) =
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A[tn−1,sn−1]. By the condition (i), (g) = (x). Thus G−A[tn−1,sn−1] ⊂ (x).

Now let g ∈ A[tn−1,sn−1]. Then AL(g) ≥ tn−1 > tn = AL(x) and
AU (g) ≥ sn−1 > sn = AU (x). By the condition (ii), (g) = (x). Thus

A[tn−1,sn−1] ⊂ (x). So G = (x). Hence, in either cases, G is cyclic. �

Lemma 3.9. Let G be a cyclic group of order pn, where p is prime.
Then there exists A ∈ IVG(G) satisfying the following conditions: For
any x, y ∈ G,

(i) A(x) = A(y)⇒ (x) = (y).

(ii) AL(x) > AL(y) and AU (x) > AU (y)⇒ (x) ⊂ (y).

Proof. Consider the following chain of subgroups of G:

(e) = G0 ⊂ G1 ⊂ · · · ⊂ Gn−1 ⊂ Gn = G,

where Gi is the subgroup of G generated by an element of order pi,
i = 0, 1, · · ·, n and e is the identity of G. We define a mapping A : G→
D(I) as follows: For each x ∈ G, A(e) = [t0, s0] and A(x) = [ti, si] if
x ∈ Gi − Gi−1 for any i = 1, 2, · · ·, n, where [ti, si] ∈ D(I) such that
t0 > t1 > · · · > tn and s0 > s1 > · · · > sn. Then we can easily check
that A ∈ IVG(G) satisfying the conditions (i) and (ii). �

From Lemmas 3.8 and 3.9, we obtain the following.

Theorem 3.10. Let G be a group of order pn. Then G is cyclic if and
only if there exists A ∈ IVG(G) satisfying the following conditions: For
any x, y ∈ G,

(i) A(x) = A(y)⇒ (x) = (y).

(ii) AL(x) > AL(y) and AU (x) > AU (y)⇒ (x) ⊂ (y).

4. Interval-valued fuzzy ideals and homomorphisms

Definition 4.1[5]. Let (R,+, ·) be a ring and let 0̃ 6= A ∈ D(I)R. Then
A is called an interval - valued fuzzy subring (in short, IVR) in R if it
satisfies the following conditions:

(i) A is an IVG in R with respect to the operation “+”(in the sense
of Definition 3.3).

(ii) A is an IVGP in R with respect to the operation “ · ”(in the sense
of Definition 2.6).
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It is clear that subrings of R are IVRs of R. We will denote the set
of all IVRs of R as IVR(R).

Definition 4.2[5]. Let R be a ring and let 0̃ 6= A ∈ D(I)R. Then A is
called an interval- valued fuzzy ideal (in short, IVI) of R if it satisfies
the following conditions:

(i) A is an IVR of R.

(ii)AL(xy) ≥ AL(x), AU (xy) ≥ AU (x) andAL(xy) ≥ AL(y), AU (xy) ≥
AU (y) for any x, y ∈ R.

We will denote the set of all IVIs of R as IVI(R).

Result 4.A[5, Proposition 6.5]. Let R be a ring and let 0̃ 6= A ∈
D(I)R. Then A ∈ IVR(R) if and only if for any x, y ∈ R,

(i)AL(x− y) ≥ AL(x) ∧AL(y) and AU (x− y) ≥ AU (x) ∧AU (y).

(ii)AL(xy) ≥ AL(x) ∧AL(y) and AU (xy) ≥ AU (x) ∧AU (y).

It is clear that if A is an IVI(R), then A(−x) = A(x) ≤ A(0) for each
x ∈ R, where 0 is the identity in R with respect to ”+”.

Proposition 4.3. Let A be an IVFS in a ring R. Then A ∈ IVI(R) if

and only if A[λ,µ] is an ideal of R for each [λ, µ] ∈ Im(A).

Proof. (⇒) : Suppose A ∈ IVI(R). For each [λ, µ] ∈ Im(A), let x, y ∈
A[λ,µ]. Then AL(x) ≥ λ,AU (x) ≥ µ and AL(y) ≥ λ,AU (y) ≥ µ. By
Result 4.A (i), AL(x − y) ≥ AL(x) ∧ AL(y) and AU (x − y) ≥ AU (x) ∧
AU (y). Thus AL(x − y) ≥ λ and AU (x − y) ≥ µ. So x − y ∈ A[λ,µ].

Let x ∈ R and y ∈ A[λ,µ]. Then AL(y) ≥ λ and AU (y) ≥ µ. Since
A ∈ IVI(R), by Result 4.A (ii), AL(xy) ≥ AL(x)∧AL(y) and AU (xy) ≥
AU (x) ∧ AU (y). Thus AL(xy) ≥ λ and AU (xy) ≥ µ. So xy ∈ A[λ,µ].

Similarly, we have yx ∈ A[λ,µ]. Hence A[λ,µ] is an ideal of R.

(⇐) : Suppose the necessary holds. For any x, y ∈ R, let A(x) =

[t1, s1] and A(y) = [t2, s2]. Then clearly x ∈ A[t1,s1] and y ∈ A[t2,s2].

Since A[t1,s1] is an ideal of R, x − y ∈ A[t1,s1]. Then AL(x − y) ≥ t1 ≥
t1 ∧ t2 = AL(x)∧AL(y) and AU (x− y) ≥ s1 ≥ s1 ∧ s2 = AU (x)∧AU (y).
Thus A satisfies the condition (i) of Result 4.A. Now for each x ∈ R, let

A(x) = [λ, µ]. Then clearly x ∈ A[λ,µ]. Let y ∈ R. Since A[λ,µ] is an ideal

of R, xy ∈ A[λ,µ] yx ∈ A[λ,µ]. Then AL(xy) ≥ λ = AL(x), AU (xy) ≥ µ =
AU (x) and AL(yx) ≥ λ = AL(y), AU (yx) ≥ µ = AU (y). Thus A satisfies
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the condition (ii) of Definition 4.2. Hence A is an IVI of R. �

Example 4.4. Let R denote the ring of real numbers under the usual
operations of addition and multiplication. We define a mapping A : R→
D(I) as follows: For each x ∈ R,

A(x) =

 [t, s] if x is rational,

[t′, s′] if x is irrational
where [t, s], [t′, s′] ∈ D(I) such that t > t′ and s > s′. Then we can see
that A ∈ IVR(R) but A /∈ IVI(R). �

Definition 4.5[5]. Let X and Y be sets, let f : X → Y be a map-
ping and let A ∈ D(I)X . Then A is said to be interval -valued fuzzy
invariant(in short, IVF -invariant) if f(x) = f(y) implies A(x) = A(y),
i.e., AL(x) = AL(y) and AU (x) = AU (y).

It is clear that if A is IVF-invariant, then f−1(f(A)) = A.

Definition 4.6[5]. Let (X, ◦) be a groupoid and let A,B ∈ D(I)X .
Then the interval -valued fuzzy product of A and B, A ◦B, is defined as
follow : For each x ∈ X,

(A ◦B)L(x) =


∨

(y,z)∈X×X

(AL(y) ∧BL(z)) if x=yz,

0 otherwise
and

(A ◦B)U (x) =


∨

(y,z)∈X×X

(AU (y) ∧BU (z)) if x=yz,

0 otherwise.

Similarly, we have the following definition.

Definition 4.7. Let A and B be any two IVIs of a ring R. Then the
interval -valued fuzzy sum of A and B , A+B, is defined as follow : For
each x ∈ X,

(A+B)L(x) =


∨

(y,z)∈X×X

(AL(y) ∧BL(z)) if x=y+z,

0 otherwise
and
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(A+B)U (x) =


∨

(y,z)∈X×X

(AU (y) ∧BU (z)) if x=y+z,

0 otherwise
This section reflects the effect of a homomorphism on the sum, product
and intersection of any two IVIs of a ring.

Proposition 4.8. Let f : R → R′ be a ring epimorphism. If A and B
are IVIs of R, then

(a) f(A+B) = f(A) + f(B),

(b) f(A ◦B) = f(A) ◦ f(B),

(c) f(A ∩B) = f(A) ∩ f(B), with equality if at least one of A or B
is IVF-invariant.

Proof. (a) Let y ∈ R′ and let ε > 0 be arbitrary. Let [α, α
′
] = f(A +

B)(y) and let [β, β
′
] = (f(A) + f(B))(y).

Then

α = f(A+B)L(y) =
∨

z∈f−1(y)

(A+B)L(z),

α
′

= f(A+B)U (y) =
∨

z∈f−1(y)

(A+B)U (z)

and

β = (f(A) + f(B))L(y) =
∨

y=z+z′

(f(A)L(z) ∧ f(B)L(z′)),

β
′

= (f(A) + f(B))U (y) =
∨

y=z+z′

(f(A)U (z) ∧ f(B)U (z′)).

Thus α− ε <
∨
z∈f−1(y)(A+B)L(z) and α

′ − ε <
∨
z∈f−1(y)(A+B)U (z).

So there exist z0, z
′
0 ∈ R with f(z0) = y and f(z

′
0) = y such that

α − ε < (A + B)L(z0) and α − ε < (A + B)U (z
′
0). By the definition of

sum,

α − ε <
∨
z0=a+b(A

L(a) ∧ BL(b)) and α
′ − ε <

∨
z
′
0=a′+b′ (A

L(a
′
) ∧

BL(b
′
)).

Then there exist a0, b0 ∈ R with z0 = a0 +b0 such that α−ε < (AL(a0)∧
BL(b0)) and there exist a

′
0, b
′
0 ∈ R with z

′
0 = a

′
0 + b

′
0 such that α

′ − ε <
(AU (a

′
0) ∧BU (b

′
0)).
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On the other hand,

β ≥ f(A)L(f(a0)) ∧ f(B)L(f(b0))

= f(AL)(f(a0)) ∧ f(BL)(f(b0))

= f−1(f(AL))(a0) ∧ f−1(f(BL))(b0)

≥ AL(a0) ∧BL(b0).

Similarly, we have β
′ ≥ AU (a

′
0)∧BU (b

′
0). So β > α− ε and β

′
> α

′ − ε.
Since ε is arbitrary, β ≥ α and β

′ ≥ α′ . Hence

[f(A) + f(B)]L(y) ≥ f(A+B)L(y) for each y ∈ R′ . (4.1)

Now we will show that β ≤ α and β
′ ≤ α′ . Clearly,

β − ε <
∨
y=z+z′ (f(A)L(z) ∧ f(B)L(z

′
))

and

β − ε <
∨
y=z+z′(f(A)U (z) ∧ f(B)U (z

′
)).

Then there exist z1, z
′
1 ∈ R

′
with y = z1 + z

′
1 such that

β − ε < f(A)L(z1) =
∨
x∈f−1(z1)A

L(x)

and

β − ε < f(B)L(z1) =
∨
x∈f−1(z

′
1)
AL(x).

Hence there exist z0, z
′
0 ∈ R

′
with y = z0 + z

′
0 such that

β − ε < f(A)U (z0) =
∧
x∈f−1(z0)A

U (x)

and

β − ε < f(B)U (z
′
0) =

∧
x∈f−1(z

′
0)
BU (x).

Thus there exist x1, x
′
1 ∈ R with f(x1) = z1, f(x

′
1) = z

′
1 such that

β − ε < AL(x1), β − ε < BL(x
′
1)

and

there exist x0, x
′
0 ∈ R with f(x0) = z0, f(x

′
0) = z

′
0 such that

β − ε < fU (x0), β − ε < BU (x
′
0). So

β − ε < AL(x1) ∧BL(x
′
1) ≤ (A+B)L(x1 + x

′
1)

≤
∨

x∈f−1(y)

(A+B)L(x) = f(A+B)L(y)

and

β
′ − ε < AU (x0) ∧BU (x

′
0) ≤ (A+B)U (x0 + x

′
0)

≤
∨

x∈f−1(y)

(A+B)U (x) = f(A+B)U (y).
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Hence β − ε < α and β
′ − ε < α

′
. Since ε > 0 is arbitrary, β ≤ α and

β
′ ≤ α′ . So

(f(A) + f(B))(y) ≤ f(A+B)(y) for each y ∈ R′ . (4.2)

Therefore, by (4.1) and (4.2), f(A) + f(B) = f(A+B).

(b) Let y ∈ R′ and let ε > 0 be arbitrary. Let [α, α
′
] = f(A ◦ B)(y)

and [β, β
′
] = (f(A) ◦ f(B))(y). Then

α = f(A ◦B)L(y) =
∨

x∈f−1(y)

(A ◦B)L(z),

α
′

= f(A ◦B)U (y) =
∨

x∈f−1(y)

(A ◦B)U (z) (4.3)

and

β = (f(A) ◦ f(B))L(y) =
∨

y=y1y2

(f(A)L(y1) ∧ f(B)L(y2)),

β
′

= (f(A) ◦ f(B))U (y) =
∨

y=y1y2

(f(A)U (y1) ∧ f(B)U (y2)). (4.4)

In (4.3), α − ε <
∨
z∈f−1(y)(A ◦ B)L(z) and α

′ − ε <
∨
z∈f−1(y)(A ◦

B)U (z). Thus there exist x, x
′ ∈ f−1(y) such that α−ε < (A◦B)L(x) and

α
′−ε < (A◦B)U (x). Since (A◦B)L(x) =

∨
x=x1x2

(AL(x1)∧BL(x2)) and

(A◦B)U (x′) =
∨
x′=x

′
1x
′
2
(AU (x

′
1)∧BU (x

′
2)), there exist x1, x2, x

′
1, x

′
2 ∈ R

with x = x1x2 and x
′

= x
′
1x
′
2 such that α − ε < AL(x1) ∧ BL(x2) and

α
′ − ε < AU (x

′
1) ∧ BU (x

′
2). Since A ⊂ f−1(f(A)), by Result 2.B(f),

AL ≤ f−1(f(A))L and AU ≤ f−1(f(A))U . On the other hand,

f−1(f(A))L = f−1(f(A)L) = f−1(f(AL))

and

f−1(f(A))U = f−1(f(A)U ) = f−1(f(AU )). Thus

α− ε < f−1(f(A)L)(x1) ∧ f−1(f(B)L)(x2)

= f(A)L(f(x1)) ∧ f(B)L(f(x2))

≤
∨

y=y1y2

(f(A)L(y1) ∧ f(B)L(y2))

= (f(A) ◦ f(B))L(y) = β.
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By the similar arguments, we have that α
′−ε ≤ (f(A)◦f(B))U (y) = β

′
.

Since ε > 0 is arbitrary, α ≤ β and α
′ ≤ β′ . In (4.4),

β − ε <
∨

y=y1y2

(f(A)L(y1) ∧ f(B)L(y2))(y2)

=
∨

y=y1y2

((
∨

z1∈f−1(y1)

AL(z1)) ∧ (
∨

z2∈f−1(y2)

BL(z2)))

and

β
′ − ε <

∨
y=y1y2

(f(A)U (y1) ∧ f(B)U (y2))

=
∨

y=y1y2

((
∨

z1∈f−1(y1)

AU (z1)) ∧ (
∨

z2∈f−1(y2)

BU (z2))).

Thus there exist y1, y2 ∈ R′ with y = y1y2 such that

β − ε < (
∨

z1∈f−1(y1)

AL(z1)) ∧ (
∨

z2∈f−1(y2)

BL(z2))

=
∨

z1∈f−1(y1)

∨
z2∈f−1(y2)

(AL(z1) ∧BL(z2))

and

β
′ − ε < (

∨
z1∈f−1(y1)

AU (z1)) ∧ (
∨

z2∈f−1(y2)

BU (z2))

=
∨

z1∈f−1(y1)

∨
z2∈f−1(y2)

(AU (z1) ∧BU (z2)).

So there exist x1 ∈ f−1(y1) and x2 ∈ f−1(y2) such that β−ε < AL(x1)∧
BL(x2) and β − ε < AU (x1) ∧BU (x2).

Let x = x1x2. Since f is a ring homomorphism, y = y1y2 = f(x1x2) =
f(x). Thus

AL(x1) ∧BL(x2) ≤
∨

x=x1x2

(AL(x1) ∧BL(x2))

= (A ◦B)L ≤
∨

x∈f−1(y)

(A ◦B)L(x)

= f(A ◦B)L(y) = α

By the similar arguments, we have that AU (x1) ∧ BU (x2) ≤ f(A ◦
B)U (y) = α

′
. So β−ε < α and β

′−ε < α
′
. Since ε > 0 is arbitrary, β ≤ α

and β
′ ≤ α′ . Hence [α, β] = [α

′
, β
′
]. Therefore f(A ◦B) = f(A) ◦ f(B).
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(c) Clearly, A∩B ⊂ A and A∩B ⊂ B. By Result 2.B(d), f(A∩B) ⊂
f(B). So f(A ∩ B) ⊂ f(A) ∩ f(B). Suppose B is IVF-invariant. Then

clearly, f−1(f(B)) = B. Let y ∈ R
′

and let ε > 0 is arbitrary. Let

[α, β] = (f(A) ∩ f(B))(y) and let [α
′
, β
′
] = (f(A) ∩ f(B))(y). Then

α = (f(A) ∩ f(B))L(y) = (
∨
x∈f−1(y)A

L(x)) ∧ f(B)L(y)

and
β = (f(A) ∩ f(B))U (y) = (

∨
x∈f−1(y)A

U (x)) ∧ f(B)U (y).

Thus α−ε < (
∨
x∈f−1(y)A

L(x))∧f(B)L(y) and β−ε < (
∨
x∈f−1(y)A

U (x))∧
f(B)U (y). So there exists an x ∈ f−1(y) such that

α− ε < AL(x), α− ε < f(B)L(y)
and

β − ε < AU (x), α− ε < f(B)U (y).
Since B is IVF-invariant,f−1(f(B)) = B. Then

f(B)L(y) = f(B)L(f(x)) = f−1(f(B)L)(x) = f−1(f(BL))(x) =
BL(x)
and

f(B)U (y) = f(B)U (f(x)) = f−1(f(B)U )(x) = f−1(f(BU ))(x) =
BU (x).
Thus α− ε < AL(x), α− ε < BL(x) and β − ε < AU (x), β − ε < BU (x).
So α− ε < AL(x)∧BL(x) = (A∩B)L(x) and β− ε < AU (x)∧BU (x) =
(A ∩B)L(x).
Hence

α− ε <
∨
x∈f−1(y)(A ∩B)L(x) = (f(A ∩B)L)(y) = α

′

and
α− ε <

∨
x∈f−1(y)(A∩B)U (x) = (f(A∩B)U )(y) = β

′
. Since ε > 0 is

arbitrary, α ≤ α′ and β ≤ β′ . Thus f(A)∩ f(B) ⊂ f(A∩B). Therefore
f(A) ∩ f(B) = f(A ∩B). �

5. Interval-valued fuzzy cosets

Definition 5.1. Let A be any IVI of a ring R and let x ∈ R. Then
Ax ∈ D(I)R is called the interval -valued fuzzy coset determined by x
and A if Ax(r) = A(r − x) for each r ∈ R.

Proposition 5.2. Let R be any IVI of a ring R and let R/A the set of
all interval-valued fuzzy cosets of A in R. Then R/A is a ring under the
following operations:

Ax +Ay = Ax+y and AxAy = Axy for any x, y ∈ R.
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Proof. For any a, b, c, d ∈ R, suppose Aa = Ab and Ac = Ad. Then

A(r − a) = A(r − b) for each r ∈ R (5.1)

and

A(r − c) = A(r − d) for each r ∈ R. (5.2)

Let r = a+ c− d in (5.1), r = c in (5.2) and r = a in (5.1). Then

A(a+ c− d− a) = A(a+ c− d− b) = A(c− d),

A(c− c) = A(c− d) = A(0) (5.3)

and

A(a− a) = A(a− b) = A(0). (5.4) On the other hand,

(Aa +Ac)
L(r) = ALa+c(r) = AL(r − a− c)

= AL((r − b− d)− (a+ c− b− d))

≥ AL(r − b− d) ∧AL(a+ c− b− d)

= AL(r − b− d) ∧AL(0) (By (5.3))

= AL(r − b− d)

= ALb+d(r) = (Ab +Ad)
L(r).

By the similar arguments, we have that (Aa+Ac)
U (r) = (Ab+Ad)

U (r).
Thus Aa + Ad ⊂ Aa + Ac. Similarly, we have Aa + Ac ⊂ Ab + Ad. So
Aa +Ac = Ab +Ad. Hence addition is well-defined. Also,

(AaAc)
L(r) = ALac(r) = AL(r − ac)

= AL((r − bd)− (ac− bd))

≥ AL(r − bd) ∧AL(ac− bd)

= AL(r − bd) ∧AL((a− b)c− b(d− c)) (By (5.3) and (5.4))

≥ AL(r − bd) ∧AL(a− b)AL(d− c))
= AL(r − bd) ∧AL(0)AL(0) (By (5.4) and (5.5))

= AL(r − bd) = ALbd(r) = ALb A
L
d (r).

By the similar arguments, we have that (AaAc)
U (r) = (AbAd)

U (r). Thus
AbAd ⊂ AaAc. Similarly, we have AaAc ⊂ AbAd. So AbAd = AaAc.
Hence multiplication is well-defined. Clearly, A0(= A) acts as the ad-
ditive identity, Ae as the multiplicative identity (where e is the multi-
plicative identity of R) and A−x as additive inverse of Ax. It is now a
purely routine matter to verify the other properties. This completes the
proof. �
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Lemma 5.3. Let A be any IVR or an IVI of a ring R. If there
exist x, y ∈ R such that AL(x) < AL(y) and AU (x) < AU (y), then
A(x− y) = A(x) = A(y − x).

Proof. Since A is an IVG of R with respect to ”+”, by Result 4.A,
A(x−y) = A(y−x). Thus it is sufficient to show that A(x−y) = A(x).
Since AL(x) < AL(y), AU (x) < AU (y) and A is an IVR or an IVI of R,
AL(x−y) ≥ AL(x)∧AL(y) = AL(x) and AU (x−y) ≥ AU (x)∧AU (y) =
AU (x). On the other hand, AL(x) = AL(x− y+ y) ≥ AL(x− y)∧AL(y)
and AU (x) = AU (x−y+y) ≥ AU (x−y)∧AU (y).Thus AL(x) ≥ AL(x−y)
and AU (x) ≥ AU (x − y). So AL(x − y) = A(x). This completes the
proof. �

Lemma 5.4. If A is any IVI of a ring R, then A(x) = A(0) if and only
if Ax = A0, where x ∈ R.

Proof. (⇒) : Suppose A(x) = A(0). Since A is an IVG of R with
respect to ”+”, A(r) ≤ A(0) = A(r), i.e., AL(r) ≤ AL(0) = AL(r) and
AU (r) ≤ AU (0) = AU (r) for each r ∈ R.

Case (i): Suppose A(r) < A(x). Then, by Lemma 5.3, A(r − x) =
A(x). Thus Ax(r) = A0(r) for each r ∈ R.

Case (ii): Suppose A(r) = A(x). Then x, r ∈ A[λ,µ], where [λ, µ] =

A(0). Since A is an IVG of R, A[λ,µ] is a subgroup of R. Thus x− r ∈
A[λ,µ]. Thus AL(x − r) ≤ λ = AL(0) and AU (x − r) ≥ µ = AU (0).
Since AL(x − r) ≤ AL(0) and AU (x − r) ≤ AU (0),AL(x − r) = AL(0)
and AU (x − r) = AU (0). Thus A(x − r) = A(0) = A(x) = A(r),
i.e.,Ax(r) = A0(r) for each r ∈ R. In either case, Ax(r) = A0(r) for
each r ∈ R. Hence Ax = A0 for each r ∈ R.

(⇐) : It is straightforward. �

Proposition 5.5. Let A be any IVI of a ring R and let A(0) = [λ, µ].

Then R/A[λ,µ] ∼= R/A.

Proof. Define a mapping f : R → R/A by f(x) = Ax for each r ∈ R.
Then it is easy to check that f is a ring epimorphism. By Lemma 5.4,

Kerf = {x ∈ R : f(x) = A0} = {x ∈ R : Ax = A0}
= {x ∈ R : A(x) = A0} = A[λ,µ].

Hence R/A[λ,µ] ∼= R/A. �



516 Hee Won Kang

Proposition 5.6. Let f : R→ R′ be a ring epimorphism and let A be
an IVI of R such that A[λ,µ] ⊂ Kerf , where [λ, µ] = A(0). Then there
exists a unique epimorphism f : R/A → R′ such that f = f̄ ◦ g, where
g(x) = Ax for each r ∈ R.

Proof. Define a mapping f̄ : RA → R′ by f̄(Ax) = f(x) for each
r ∈ R. Suppose Ax = Ay. Then Ax−y = A0 = Ax = Ay. By Lemma

5.4, A(x − y) = A(x). Then x − y ∈ A[λ,µ]. Since A[λ,µ] ⊂ Kerf ,
x − y ∈ Kerf . Thus f(x) = f(y), i.e., f̄(Ax) = f̄(Ay). So f̄ is well-
defined. Furthermore, since f is surjective, f̄ is also surjective. More-
over, it is easy to see that f̄ is a homomorphism.

Consider the following diagram:

fR R′-

g f̄

R/A

J
J
J
J
J
J
J]














�

Let x ∈ R. Then f(x) = f̄(Ax) = f̄(g(x)) = (f̄ ◦ g)(x). Thus the above
diagram commutes, i.e., f = f̄ ◦ g.

Suppose there exists an epimorphism h : R/A → R′ such that f =
h ◦ g. Let x ∈ R. Then f̄(Ax) = f(x) = (h ◦ g)(x) = h(g(x)) = h(Ax).
Thus f̄ = h. So f̄ is unique. This completes the proof. �

Corollary 5.6. The induced homomorphism f̄ is an isomorphism if
and only if A is IVF-invariant.

Proof. (⇒) : Suppose f̄ is an isomorphism, i.e., f̄ is injective. For any
x, y ∈ R, let f(x) = f(y). Then f̄(Ax) = f̄(Ay). Since f̄ is injective,
Ax = Ay. Thus Ax−y = A0. By Lemma 5.4, A(x − y) = A(0). By
Proposition 4.7 in [5], A(x) = A(y). So A is IVF-invariant.

(⇐) : Suppose A is IVF-invariant and f̄(Ax) = f̄(Ay). Then f(x) =
f(0). Since A is IVF-invariant, A(x) = A(0). By Lemma 5.4, Ax = A0.
So f̄ is injective. This completes the proof. �
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Proposition 5.7. Let f : R→ R
′

be a ring epimorphism and let A be
an IVF-invariant IVI of R. Then R/A = R

′
/f(A).

Proof. Since A is IVF-invariant, Kerf ⊂ A[λ,µ], where [λ, µ] = A(0).

Consider f(A)(0
′
) = [f(AL)(0

′
), f(AU )(0

′
)], where 0

′
denotes the addi-

tive identity in R
′
. Then

f(AL)(0′) =
∨

x∈f−1(0′ )

AL(x) and f(AU )(0
′
) =

∨
x∈f−1(0′ )

AU (x)

Since f(0) = 0
′

and A(x) ≤ A(0), i.e., AL(x) ≤ AL(0), AU (x) ≤ AU (0)

for each x ∈ R, AL(x) = AL(0) and AU (x) = AU (0), i.e., f(A)(0
′
) =

A(0) = [λ, µ]. Now,

f(x) ∈ [f(A)][λ,µ] ⇔ f(A)L(f(X)) ≥ λ and f(A)U (f(X)) ≥ µ
⇔ f(AL)(f(x)) ≥ λ and f(AU )(f(x)) ≥ µ
⇔ f−1(f(AL))(x) ≥ λ and f−1(f(AU ))(x) ≥ µ
⇔ AL(x) ≥ λ and AU (x) ≥ µ (by Result 4.B)

⇔ x ∈ A[λ,µ]

⇔ f(x) ∈ f(A[λ,µ]) (Since Kerf ⊂ A[λ,µ]).

So [f(A)]λ,µ] = f(A[λ,µ]). By Proposition 5.5, R/A ∼= R/A[λ,µ] and

R′/f(A) ∼= R/[f(A)][λ,µ]. Hence R/A ∼= R′/f(A). This completes the
proof. �
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