INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS

Hee Won Kang

Abstract

We obtain the interval-valued fuzzy subgroups generated by interval-valued fuzzy sets and some properties preserved by a ring homomorphism. Furthermore, we introduce the concepts of interval-valued fuzzy coset and study some of it's properties.

1. Introduction

In 1975, Zadeh[8] introduced the concept of interval-valued fuzzy sets as a generalization of fuzzy sets introduced by himself[7]. After then, Biswas[1] applied the notion of interval-valued fuzzy sets to group theory. Moreover, Gorzalczany[3] applied it to a method of inference in approximate reasoning, and Montal and Samanta[6] applied it to topology. Recently, Hur et al.[4] introduced the concept of an interval-valued fuzzy relations and obtained some of it's properties . Also, Choi et al.[2] applied it to topology in the sense of Šostak, Kang and Hur [5] applied it to algebra.

In this paper, we introduce the notion of interval-valued fuzzy cosets and investigate some of it's properties. Furthermore we obtain the interval-valued fuzzy subgroups generated by interval-valued fuzzy sets and study some properties preserved by a ring homomorphism.

2. Preliminaries

We will list some concepts and two results needed in the later sections.

[^0]Let $D(I)$ be the set of all closed subintervals of the unit interval $I=[0,1]$. The elements of $D(I)$ are generally denoted by capital letters M, N, \cdots, and note that $M=\left[M^{L}, M^{U}\right]$, where M^{L} and M^{U} are the lower and the upper end points respectively. Especially, we denoted, $\mathbf{0}$ $=[0,0], \mathbf{1}=[1,1]$, and $\mathbf{a}=[a, a]$ for every $a \in(0,1)$, We also note that
(i) $(\forall M, N \in D(I))\left(M=N \Leftrightarrow M^{L}=N^{L}, M^{U}=N^{U}\right)$,
(ii) $(\forall M, N \in D(I))\left(M \leq N \Leftrightarrow M^{L} \leq N^{L}, M^{U} \leq N^{U}\right)$.

For every $M \in D(I)$, the complement of M, denoted by M^{c}, is defined by $M^{c}=1-M=\left[1-M^{U}, 1-M^{L}\right](\operatorname{See}[6])$.

Definition 2.1[3,8]. A mapping $A: X \rightarrow D(I)$ is called an intervalvalued fuzzy set (in short, IVFS) in X, denoted by $A=\left[A^{L}, A^{U}\right]$, if $A^{L}, A^{U} \in I^{X}$ such that $A^{L} \leq A^{U}$, i.e., $A^{L}(x) \leq A^{U}(x)$ for each $x \in X$, where $A^{L}(x)\left[\right.$ resp. $\left.A^{U}(x)\right]$ is called the lower[resp. upper] end point of x to A. For any $[a, b] \in D(I)$, the interval-valued fuzzy set A in X defined by $A(x)=\left[A^{L}(x), A^{U}(x)\right]=[a, b]$ for each $x \in X$ is denoted by $[\widetilde{a, b}]$ and if $a=b$, then the IVFS $[\widetilde{a, b}]$ is denoted by simply \widetilde{a}. In particular, $\widetilde{0}$ and $\widetilde{1}$ denote the interval-valued fuzzy empty set and the interval-valued fuzzy whole set in X, respectively.

We will denote the set of all IVFSs in X as $D(I)^{X}$. It is clear that set $A=\left[A^{L}, A^{U}\right] \in D(I)^{X}$ for each $A \in I^{X}$.

Definition 2.2[6]. An IVFS A is called an interval-valued fuzzy point(in short, IVFP) in X with the support $x \in X$ and the value $[a, b] \in D(I)$ with $b>0$, denoted by $A=x_{[a, b]}$, if for each $y \in X$,

$$
A(y)= \begin{cases}{[a, b]} & \text { if } y=x \\ \mathbf{0} & \text { otherwise }\end{cases}
$$

In particular, if $b=a$, then $x_{[a, b]}$ is denoted by $x_{\mathbf{a}}$.

We will denote the set of all IVFPs in X as $\operatorname{IVF}_{P}(X)$.

Definition 2.3[6]. Let $A, B \in D(I)^{X}$ and let $\left\{A_{\alpha}\right\}_{\alpha \in \Gamma} \subset D(I)^{X}$. Then:
(i) $A \subset B$ iff $A^{L} \leq B^{L}$ and $A^{U} \leq B^{U}$.
(ii) $A=B$ iff $A \subset B$ and $B \subset A$.
(iii) $A^{c}=\left[1-A^{U}, 1-A^{L}\right]$.
(iv) $A \cup B=\left[A^{L} \vee B^{L}, A^{U} \vee B^{U}\right]$.
(iv) $\bigcup_{\alpha \in \Gamma} A_{\alpha}=\left[\bigvee_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigvee_{\alpha \in \Gamma} A_{\alpha}^{U}\right]$.
(v) $A \cap B=\left[A^{L} \wedge B^{L}, A^{U} \wedge B^{U}\right]$.
(v) $\bigcap_{\alpha \in \Gamma} A_{\alpha}=\left[\bigwedge_{\alpha \in \Gamma} A_{\alpha}^{L}, \bigwedge_{\alpha \in \Gamma} A_{\alpha}^{U}\right]$.

Result 2.A [6, Theorem 1]. Let $A, B, C \in D(I)^{X}$ and let $\left\{A_{\alpha}\right\}_{\alpha \in \Gamma} \subset$ $D(I)^{X}$. Then:
(a) $\widetilde{0} \subset A \subset \widetilde{1}$.
(b) $A \cup B=B \cup A, A \cap B=B \cap A$.
(c) $A \cup(B \cup C)=(A \cup B) \cup C, A \cap(B \cap C)=(A \cap B) \cap C$.
(d) $A, B \subset A \cup B, A \cap B \subset A, B$.
(e) $A \cap\left(\bigcup_{\alpha \in \Gamma} A_{\alpha}\right)=\bigcup_{\alpha \in \Gamma}\left(A \cap A_{\alpha}\right)$.
(f) $A \cup\left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right)=\bigcap_{\alpha \in \Gamma}\left(A \cup A_{\alpha}\right)$.
(g) $(\widetilde{0})^{c}=\widetilde{1},(\widetilde{1})^{c}=\widetilde{0}$.
(h) $\left(A^{c}\right)^{c}=A$.
(i) $\left(\bigcup_{\alpha \in \Gamma} A_{\alpha}\right)^{c}=\bigcap_{\alpha \in \Gamma} A_{\alpha}^{c},\left(\bigcap_{\alpha \in \Gamma} A_{\alpha}\right)^{c}=\bigcup_{\alpha \in \Gamma} A_{\alpha}^{c}$.

Definition 2.4[7]. Let $A \in D(I)^{X}$ and let $x_{M} \in \operatorname{IVF}_{P}(X)$. Then:
(i) The set $\left\{x \in X: A^{U}(x)>0\right\}$ is called the support of A and is denoted by $S(A)$.
(ii) x_{M} said to belong to A, denoted by $x_{M} \in A$, if $M^{L} \leq A^{L}(x)$ and $M^{U} \leq A^{U}(x)$ for each $x \in X$.

It is obvious that $A=\bigcup_{x_{M} \in A} x_{M}$ and $x_{M} \in A$ if and only if $x_{M^{L}} \in A^{L}$ and $x_{M^{U}} \in A^{U}$.

Definition 2.5[6]. Let $f: X \rightarrow Y$ be a mapping, let $A=\left[A^{L}, A^{U}\right]$ $\in D(I)^{X}$ and let $B=\left[B^{L}, B^{U}\right] \in D(I)^{Y}$. Then
(a) the image of A under f, denoted by $f(A)$, is an IVFS in Y defined as follows: For each $y \in Y$,

$$
f\left(A^{L}\right)(y)= \begin{cases}\bigvee_{y=f(x)} A^{L}(x) & \text { if } f^{-1}(y) \neq \varnothing \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f\left(A^{U}\right)(y)= \begin{cases}\bigvee_{y=f(x)} A^{U}(x) & \text { if } f^{-1}(y) \neq \varnothing, \\ 0 & \text { otherwise }\end{cases}
$$

(b) the preimage of B under f, denoted by $f^{-1}(B)$, is an IVFS in Y defined as follows: For each $y \in Y$,

$$
f^{-1}\left(B^{L}\right)(y)=\left(B^{L} \circ f\right)(x)=B^{L}(f(x))
$$

and

$$
f^{-1}\left(B^{U}\right)(y)=\left(B^{U} \circ f\right)(x)=B^{U}(f(x))
$$

It can be easily seen that $f(A)=\left[f\left(A^{L}\right), f\left(A^{U}\right)\right]$ and $f^{-1}(B)=$ $\left[f^{-1}\left(B^{L}\right), f^{-1}\left(B^{U}\right)\right]$.

Result 2.B[6, Theorem 2]. Let $f: X \rightarrow Y$ be a mapping and $g: Y \rightarrow Z$ be a mapping. Then
(a) $f^{-1}\left(B^{c}\right)=\left(f^{-1}(B)\right)^{c}, \forall B \in D(I)^{Y}$.
(b) $[f(A)]^{c} \subset f\left(A^{c}\right), \forall A \in D(I)^{Y}$.
(c) $B_{1} \subset B_{2} \Rightarrow f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$, where $B_{1}, B_{2} \in D(I)^{Y}$.
(d) $A_{1} \subset A_{2} \Rightarrow f\left(A_{1}\right) \subset f\left(A_{2}\right)$, where $A_{1}, A_{2} \in D(I)^{X}$.
(e) $f\left(f^{-1}(B)\right) \subset B, \forall B \in D(I)^{Y}$.
(f) $A \subset f\left(f^{-1}(A)\right), \forall A \in D(I)^{Y}$.
(g) $(g \circ f)^{-1}(C)=f^{-1}\left(g^{-1}(C)\right), \forall C \in D(I)^{Z}$.
(h) $f^{-1}\left(\bigcup_{\alpha \in \Gamma} B_{\alpha}\right)=\bigcup_{\alpha \in \Gamma} f^{-1} B_{\alpha}$, where $\left\{B_{\alpha}\right\}_{\alpha \in \Gamma} \in D(I)^{Y}$.
(h) $f^{-1}\left(\bigcap_{\alpha \in \Gamma} B_{\alpha}\right)=\bigcap_{\alpha \in \Gamma} f^{-1} B_{\alpha}$, where $\left\{B_{\alpha}\right\}_{\alpha \in \Gamma} \in D(I)^{Y}$.

Definition 2.6[5]. An interval-valued fuzzy set A in G is called an interval-valued fuzzy subgroupoid(in short, IVGP) in G if

$$
A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y) \text { and } A^{U}(x y) \geq A^{U}(x) \wedge A^{U}(y), \forall x, y \in G
$$

It is clear that $\widetilde{0}, \widetilde{1} \in \operatorname{IVGP}(G)$. We will denote the IVGPs in G as $\operatorname{IVGP}(G)$.

3. Interval-valued fuzzy subgroup generated by an intervalvalued fuzzy set

Definition 3.1[5]. Let A be an IVFS in a set X and let $[\lambda, \mu] \in D(I)$. Then the set $A^{[\lambda, \mu]}=\left\{x \in X: A^{L}(x) \geq \lambda\right.$ and $\left.A^{U}(x) \geq \mu\right\}$ is called a $[\lambda, \mu]$-level subset of A.

The following is the immediate result of Definition 3.1.
Proposition 3.2. Let A be an IVFS in a set X and let $\left[\lambda_{1}, \mu_{1}\right],\left[\lambda_{2}, \mu_{2}\right] \in$ $\operatorname{Im}(\mathrm{A})$. If $\lambda_{1}<\lambda_{2}$ and $\mu_{1}<\mu_{2}$, then $A^{\left[\lambda_{1}, \mu_{1}\right]} \supset A^{\left[\lambda_{2}, \mu_{2}\right]}$.

Definition 3.3[5]. Let G be a group and let $A \in D(I)^{G}$. Then A is called an interval-valued fuzzy subgroup (in short, IVG) of G if it satisfies the following conditions :
(i) $A \in \operatorname{IVGP}(\mathrm{G})$, i.e., $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq$ $A^{U}(x) \wedge A^{U}(y), \forall x, y \in G$.
(ii) $A^{L}\left(x^{-1}\right) \geq A^{L}(x)$ and $A^{U}\left(x^{-1}\right) \geq A^{U}(x), \forall x, y \in G$.

We will denote the set of all IVGs of G as IVG (G).

Result 3. A [1, Proposition 3.1]. Let A be an IVG of a group G. Then $A\left(x^{-1}\right)=A(x)$ and $A^{L}(x) \leq A^{L}(e), A^{U}(x) \leq A^{U}(e)$ for each $x \in G$, where e is the identity element of G.

Result 3.B[5, Proposition 4.16 and 4.17]. Let A be an IVFS in a group G. Then $A \in \operatorname{IVG}(\mathrm{G})$ if and only if $A^{[\lambda, \mu]}$ is a subgroup of G for each $[\lambda, \mu] \in \operatorname{Im}(A)$.

Definition 3.4. Let A be an IVG of a group G and $[\lambda, \mu] \in \operatorname{Im}(\mathrm{A})$. Then the subgroup $A^{[\lambda, \mu]}$ is called a $[\lambda, \mu]$-level subgroup of A.

Lemma 3.5. Let A be any IVFS of a set X. Then $A^{L}(x)=\bigvee\{\lambda: x \in$ $\left.A^{[\lambda, \mu]}\right\}$ and
$A^{U}(x)=\bigvee\left\{\mu: x \in A^{[\lambda, \mu]}\right\}$, where $x \in X$ and $[\lambda, \mu] \in D(I)$.
Proof. Let $\alpha=\bigvee\left\{\lambda: x \in A^{[\lambda, \mu]}\right\}$, let $\beta=\bigvee\left\{\mu: x \in A^{[\lambda, \mu]}\right\}$ and let $\epsilon>0$ be arbitrary. Then $\alpha-\epsilon<\bigvee\left\{\lambda: x \in A^{[\lambda, \mu]}\right\}$ and
$\beta-\epsilon<\bigvee\left\{\mu: x \in A^{[\lambda, \mu]}\right\}$. Thus there exist $[\lambda, \mu] \in D(I)$ such that $x \in A^{[\lambda, \mu]}, \alpha-\epsilon<\lambda$ and $\beta-\epsilon<\mu$. Since $x \in A^{[\lambda, \mu]}, A^{L}(x) \geq \lambda$ and $A^{U}(x) \geq \mu$. Thus $A^{L}(x)>\alpha-\epsilon$ and $A^{U}(x)>\beta-\epsilon$. Since $\epsilon>0$ is arbitrary, $A^{L}(x) \geq \alpha$ and $A^{U}(x) \geq \beta$. We now show that $A^{L}(x) \leq \alpha$ and $A^{U}(x) \leq \beta$. Suppose $A^{L}(x)=t_{1}$ and $A^{U}(x)=t_{2}$. Then $\left[t_{1}, t_{2}\right] \in \operatorname{Im}(\mathrm{A})$. Thus $x \in A^{\left[t_{1}, t_{2}\right]}$. So $t_{1} \in\left\{\lambda: x \in A^{[\lambda, \mu]}\right\}$ and $t_{2} \in\left\{\lambda: x \in A^{[\lambda, \mu]}\right\}$. So $t_{1}=\bigvee\left\{\lambda: x \in A^{[\lambda, \mu]}\right\}$ and $t_{2}=\bigvee\left\{\mu: x \in A^{[\lambda, \mu]}\right\}$, i.e. $A^{L}(x) \leq \alpha$ and $A^{U}(x) \leq \beta$. This completes the proof.

We shall denote by (A) the IVG generated by the IVFS A in G. We shall use the same notation $\left(A^{[\lambda, \mu]}\right)$ for the ordinary subgroup of the group G generated by the level subset $A^{[\lambda, \mu]}$.

Theorem 3.6. Let G be group and let $A \in D(I)^{G}$. Let $A^{*} \in D(I)^{G}$ be defined as follows: For each $x \in G$,
$\left(A^{*}\right)^{L}(x)=\bigvee\left\{\lambda: x \in\left(A^{[\lambda, \mu]}\right)\right\}$ and $\left(A^{*}\right)^{U}(x)=\bigvee\left\{\mu: x \in\left(A^{[\lambda, \mu]}\right)\right\}$, where $[\lambda, \mu] \in D(I)$. Then $A^{*} \in \operatorname{IVG}(\mathrm{G})$ such that $A^{*}=\bigcap\{B \in$ $\operatorname{IVG}(\mathrm{G}): A \subset B\}$. In this case, A^{*} is called the interval-valued fuzzy subgroup generated by A in G and will be denoted by (A).

Proof. Let $\left[t_{1}, t_{2}\right] \in \operatorname{Im}\left(A^{*}\right)$ and $\alpha=t_{1}-\frac{1}{n}$ and $\alpha=t_{2}-\frac{1}{n}$, where n is any sufficiently large positive integer. Let $x \in G$. Suppose $x \in A^{*\left[t_{1}, t_{2}\right]}$. Then $\left(A^{*}\right)^{L}(x) \geq t_{1}$ and $\left(A^{*}\right)^{U}(x) \geq t_{2}$. Thus there exist $[\lambda, \mu] \in D(I)$ such that $\lambda>\alpha, \mu>\beta$ and $x \in A^{[\lambda, \mu]}$. Since $[\alpha, \beta]<[\lambda, \mu]$ and $[\alpha, \beta] \in D(I)$, by Proposition 3.2, $A^{[\lambda, \mu]} \subset A^{[\alpha, \beta]}$. So $x \in A^{[\alpha, \beta]}$, i.e., $x \in\left(A^{[\alpha, \beta]}\right)$. Now suppose $x \in\left(A^{[\lambda, \mu]}\right)$. Then $\alpha \in\left\{\lambda: x \in\left(A^{[\lambda, \mu]}\right)\right\}$ and $\beta \in\left\{\mu: x \in\left(A^{[\lambda, \mu]}\right)\right\}$. Thus $\alpha \leq \bigvee\left\{\lambda: x \in\left(A^{[\lambda, \mu]}\right)\right\}$ and $\beta \leq \bigvee\{\mu:$ $\left.x \in\left(A^{[\lambda, \mu]}\right)\right\}$. So $t_{1}-\frac{1}{n} \leq\left(A^{*}\right)^{L}(x)$ and $t_{2}-\frac{1}{n} \leq\left(A^{*}\right)^{U}(x)$, i.e., $t_{1} \leq$ $\left(A^{*}\right)^{L}(x)$ and $t_{2} \leq\left(A^{*}\right)^{U}(x)$. Hence $x \in A^{*\left[t_{1}, t_{2}\right]}$, i.e., $\left(A^{*[\alpha, \beta]}\right) \subset A^{*\left[t_{1}, t_{2}\right]}$. Therefore $A^{*\left[t_{1}, t_{2}\right]}=\left(A^{*[\alpha, \beta]}\right)$. Since $\left(A^{*[\alpha, \beta]}\right)$ is a subgroup of $G, A^{*\left[t_{1}, t_{2}\right]}$ is a subgroup of G. By Result 3.B, $A^{*} \in \operatorname{IVG}(\mathrm{G})$.

Now, we show that $A \subset A^{*}$. Let $x \in G$. Then, by Lemma 3.5, $\left(A^{*}\right)^{L}(x)=\bigvee\left\{\lambda: x \in A^{[\lambda, \mu]}\right\}$ and $\left(A^{*}\right)^{U}(x)=\bigvee\left\{\mu: x \in A^{[\lambda, \mu]}\right\}$. Thus $\left(A^{*}\right)^{L}(x) \leq \bigvee\left\{\lambda: x \in\left(A^{[\lambda, \mu]}\right)\right\}$ and $\left(A^{*}\right)^{U}(x) \leq \bigvee\left\{\mu: x \in\left(A^{[\lambda, \mu]}\right)\right\}$. So $A \subset A^{*}$. Finally, let B be any IVG of G such that $A \subset B$. We show that $A^{*} \subset B$. Let $x \in G$ and $A^{*}(x)=\left[t_{1}, t_{2}\right]$. Then $A^{*\left[t_{1}, t_{2}\right]}=\left(A^{[\alpha, \beta]}\right)$, where $\alpha=t_{1}-\frac{1}{n}, \beta=t_{2}-\frac{1}{n}$, and n is any sufficiently large positive integer. Thus $x \in\left(A^{[\alpha, \beta]}\right)$. So $x=a_{1} a_{2} \cdots a_{m}$, where a_{i} or a_{i}^{-1} belongs to $A^{[\alpha, \beta]}(i=1, \cdots, m)$.

On the other hand,

$$
\begin{aligned}
B^{L}(x) & =B^{L}\left(a_{1} a_{2} \cdots a_{m}\right) \\
& \geq B^{L}\left(a_{1}\right) \wedge B^{L}\left(a_{2}\right) \wedge \cdots \wedge B^{L}\left(a_{m}\right) \\
& \geq A^{L}\left(a_{1}\right) \wedge A^{L}\left(a_{2}\right) \wedge \cdots \wedge A^{L}\left(a_{m}\right) \\
& \geq \alpha=t_{1}-\frac{1}{n} .
\end{aligned}
$$

By the similar arguments, we have that $B^{U}(x) \geq \beta=t_{2}-\frac{1}{n}$. Since n is sufficiently large positive integer, $B^{L}(x) \geq t_{1}$ and $B^{U}(x) \geq t_{2}$. So $A^{*} \subset B$. Hence $A^{*}=\bigcap\{B \in \operatorname{IVG}(\mathrm{G}): A \subset B\}$. This completes the proof.

It is possible that card $\operatorname{Im}\left(A^{*}\right)$ be less than card $\operatorname{Im}(A)$. Moreover, $\operatorname{Im}\left(A^{*}\right)$ need not be contained in $\operatorname{Im}(A)$ as shown in the following examples.

Example 3.7. let $G=\{e, a, b, c\}$ be the Klein four -group, where $a^{2}=b^{2}=e$ and $a b=b a$. Define an IVFS A of G by: $A(e)=$ $[0.5,0.5], A(a)=[0.2,0.8], A(b)=[0.3,0.7], A(a b)=[0.4,0.6]$. Then $A^{[0.2,0.8]}=\{a\}, A^{[0.3,0.7]}=\{a, b\}, A^{[0.4,0.6]}=\{a, b, a b\}$ and $A^{[0.5,0.5]}=G$. Thus $\left(A^{[0.2,0.8]}\right)=\{e, a\}$ and $\left(A^{[0.3,0.7]}\right)=G$. Moreover, by definition, we have $A^{*}(e)=A^{*}(a)=[0.2,0.8]$ and $A^{*}(b)=A^{*}(a b)=[0.3,0.7]$.

Now an attempt is made to obtain a necessary and sufficient condition for a p-group to be cyclic.

Lemma 3.8. Let G be a finite group. Suppose there exists $A \in \operatorname{IVG}(\mathrm{G})$ satisfying the following conditions: For any $x, y \in G$,
(i) $A(x)=A(y) \Rightarrow(x)=(y)$.
(ii) $A^{L}(x)>A^{L}(y)$ and $A^{U}(x)>A^{U}(y) \Rightarrow(x) \subset(y)$.

Then G is cyclic.
Proof. Suppose A is constant on G. Then $A(x)=A(y)$ for any $x, y \in$ G. By the condition (i), $(x)=(y)$. So $G=(x)$. Now suppose A is not constant on G. Let $\operatorname{Im}(A)=\left\{\left[t_{0}, s_{0}\right],\left[t_{1}, s_{1}\right], \cdots,\left[t_{n}, s_{n}\right]\right\}$, where $t_{0}>t_{1}>\cdots>t_{n}$ and $s_{0}>s_{1}>\cdots>s_{n}$. Then, by Proposition 3.2 and Result 3.B, we obtain the chain of level subgroups of A :
$A^{\left[t_{0}, s_{0}\right]} \subset A^{\left[t_{1}, s_{1}\right]} \subset \cdots \subset A^{\left[t_{n}, s_{n}\right]}=G$.
Let $x \in G-A^{\left[t_{n-1}, s_{n-1}\right]}$. We show that $G=(x)$. Let $g \in G-A^{\left[t_{n-1}, s_{n-1}\right]}$. Since $t_{0}>t_{1}>\cdots>t_{n}$ and $s_{0}>s_{1}>\cdots>s_{n}, A(g)=A(x)=$
$A^{\left[t_{n-1}, s_{n-1}\right]}$. By the condition (i), $(g)=(x)$. Thus $G-A^{\left[t_{n-1}, s_{n-1}\right]} \subset(x)$. Now let $g \in A^{\left[t_{n-1}, s_{n-1}\right]}$. Then $A^{L}(g) \geq t_{n-1}>t_{n}=A^{L}(x)$ and $A^{U}(g) \geq s_{n-1}>s_{n}=A^{U}(x)$. By the condition (ii), $(g)=(x)$. Thus $A^{\left[t_{n-1}, s_{n-1}\right]} \subset(x)$. So $G=(x)$. Hence, in either cases, G is cyclic.

Lemma 3.9. Let G be a cyclic group of order p^{n}, where p is prime. Then there exists $A \in \operatorname{IVG}(\mathrm{G})$ satisfying the following conditions: For any $x, y \in G$,
(i) $A(x)=A(y) \Rightarrow(x)=(y)$.
(ii) $A^{L}(x)>A^{L}(y)$ and $A^{U}(x)>A^{U}(y) \Rightarrow(x) \subset(y)$.

Proof. Consider the following chain of subgroups of G :
$(e)=G_{0} \subset G_{1} \subset \cdots \subset G_{n-1} \subset G_{n}=G$,
where G_{i} is the subgroup of G generated by an element of order p^{i}, $i=0,1, \cdots, n$ and e is the identity of G. We define a mapping $A: G \rightarrow$ $D(I)$ as follows: For each $x \in G, A(e)=\left[t_{0}, s_{0}\right]$ and $A(x)=\left[t_{i}, s_{i}\right]$ if $x \in G_{i}-G_{i-1}$ for any $i=1,2, \cdots, n$, where $\left[t_{i}, s_{i}\right] \in D(I)$ such that $t_{0}>t_{1}>\cdots>t_{n}$ and $s_{0}>s_{1}>\cdots>s_{n}$. Then we can easily check that $A \in \operatorname{IVG}(\mathrm{G})$ satisfying the conditions (i) and (ii).

From Lemmas 3.8 and 3.9, we obtain the following.

Theorem 3.10. Let G be a group of order p^{n}. Then G is cyclic if and only if there exists $A \in \operatorname{IVG}(\mathrm{G})$ satisfying the following conditions: For any $x, y \in G$,
(i) $A(x)=A(y) \Rightarrow(x)=(y)$.
(ii) $A^{L}(x)>A^{L}(y)$ and $A^{U}(x)>A^{U}(y) \Rightarrow(x) \subset(y)$.

4. Interval-valued fuzzy ideals and homomorphisms

Definition 4.1[5]. Let $(R,+, \cdot)$ be a ring and let $\tilde{0} \neq A \in D(I)^{R}$. Then A is called an interval- valued fuzzy subring (in short, $I V R$) in R if it satisfies the following conditions:
(i) A is an IVG in R with respect to the operation "+" (in the sense of Definition 3.3).
(ii) A is an IVGP in R with respect to the operation ". "(in the sense of Definition 2.6).

It is clear that subrings of R are IVRs of R. We will denote the set of all IVRs of R as IVR(R).

Definition 4.2[5]. Let R be a ring and let $\tilde{0} \neq A \in D(I)^{R}$. Then A is called an interval- valued fuzzy ideal (in short, IVI) of R if it satisfies the following conditions:
(i) A is an IVR of R.
(ii) $A^{L}(x y) \geq A^{L}(x), A^{U}(x y) \geq A^{U}(x)$ and $A^{L}(x y) \geq A^{L}(y), A^{U}(x y) \geq$ $A^{U}(y)$ for any $x, y \in R$.

We will denote the set of all IVIs of R as $\operatorname{IVI}(\mathrm{R})$.
Result 4.A[5, Proposition 6.5]. Let R be a ring and let $\tilde{0} \neq A \in$ $D(I)^{R}$. Then $A \in \operatorname{IVR}(R)$ if and only if for any $x, y \in R$,
(i) $A^{L}(x-y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x-y) \geq A^{U}(x) \wedge A^{U}(y)$.
(ii) $A^{L}(x y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq A^{U}(x) \wedge A^{U}(y)$.

It is clear that if A is an $\operatorname{IVI}(\mathrm{R})$, then $A(-x)=A(x) \leq A(0)$ for each $x \in R$, where 0 is the identity in R with respect to " + ".

Proposition 4.3. Let A be an IVFS in a ring R . Then $A \in \mathrm{IVI}(\mathrm{R})$ if and only if $A^{[\lambda, \mu]}$ is an ideal of R for each $[\lambda, \mu] \in \operatorname{Im}(\mathrm{A})$.

Proof. (\Rightarrow) : Suppose $A \in \operatorname{IVI}(\mathrm{R})$. For each $[\lambda, \mu] \in \operatorname{Im}(A)$, let $x, y \in$ $A^{[\lambda, \mu]}$. Then $A^{L}(x) \geq \lambda, A^{U}(x) \geq \mu$ and $A^{L}(y) \geq \lambda, A^{U}(y) \geq \mu$. By Result 4.A (i), $A^{L}(x-y) \geq A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x-y) \geq A^{U}(x) \wedge$ $A^{U}(y)$. Thus $A^{L}(x-y) \geq \lambda$ and $A^{U}(x-y) \geq \mu$. So $x-y \in A^{[\lambda, \mu]}$. Let $x \in R$ and $y \in A^{[\lambda, \mu]}$. Then $A^{L}(y) \geq \lambda$ and $A^{U}(y) \geq \mu$. Since $A \in \operatorname{IVI}(\mathrm{R})$, by Result 4.A (ii), $A^{L}(x y) \geq \bar{A}^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x y) \geq$ $A^{U}(x) \wedge A^{U}(y)$. Thus $A^{L}(x y) \geq \lambda$ and $A^{U}(x y) \geq \mu$. So $x y \in A^{[\lambda, \mu]}$. Similarly, we have $y x \in A^{[\lambda, \mu]}$. Hence $A^{[\lambda, \mu]}$ is an ideal of R.
(\Leftarrow) : Suppose the necessary holds. For any $x, y \in R$, let $A(x)=$ $\left[t_{1}, s_{1}\right]$ and $A(y)=\left[t_{2}, s_{2}\right]$. Then clearly $x \in A^{\left[t_{1}, s_{1}\right]}$ and $y \in A^{\left[t_{2}, s_{2}\right]}$. Since $A^{\left[t_{1}, s_{1}\right]}$ is an ideal of $R, x-y \in A^{\left[t_{1}, s_{1}\right]}$. Then $A^{L}(x-y) \geq t_{1} \geq$ $t_{1} \wedge t_{2}=A^{L}(x) \wedge A^{L}(y)$ and $A^{U}(x-y) \geq s_{1} \geq s_{1} \wedge s_{2}=A^{U}(x) \wedge A^{U}(y)$. Thus A satisfies the condition (i) of Result 4.A. Now for each $x \in R$, let $A(x)=[\lambda, \mu]$. Then clearly $x \in A^{[\lambda, \mu]}$. Let $y \in R$. Since $A^{[\lambda, \mu]}$ is an ideal of $R, x y \in A^{[\lambda, \mu]} y x \in A^{[\lambda, \mu]}$. Then $A^{L}(x y) \geq \lambda=A^{L}(x), A^{U}(x y) \geq \mu=$ $A^{U}(x)$ and $A^{L}(y x) \geq \lambda=A^{L}(y), A^{U}(y x) \geq \mu=A^{U}(y)$. Thus A satisfies
the condition (ii) of Definition 4.2. Hence A is an IVI of R.

Example 4.4. Let R denote the ring of real numbers under the usual operations of addition and multiplication. We define a mapping $A: R \rightarrow$ $D(I)$ as follows: For each $x \in R$,
$A(x)= \begin{cases}{[t, s]} & \text { if } \mathrm{x} \text { is rational, } \\ {\left[t^{\prime}, s^{\prime}\right]} & \text { if } \mathrm{x} \text { is irrational }\end{cases}$
where $[t, s],\left[t^{\prime}, s^{\prime}\right] \in D(I)$ such that $t>t^{\prime}$ and $s>s^{\prime}$. Then we can see that $A \in \operatorname{IVR}(\mathrm{R})$ but $A \notin \operatorname{IVI}(\mathrm{R})$.

Definition 4.5[5]. Let X and Y be sets, let $f: X \rightarrow Y$ be a mapping and let $A \in D(I)^{X}$. Then A is said to be interval-valued fuzzy invariant(in short, IVF-invariant) if $f(x)=f(y)$ implies $A(x)=A(y)$, i.e., $A^{L}(x)=A^{L}(y)$ and $A^{U}(x)=A^{U}(y)$.

It is clear that if A is IVF-invariant, then $f^{-1}(f(A))=A$.
Definition 4.6[5]. Let (X, \circ) be a groupoid and let $A, B \in D(I)^{X}$. Then the interval-valued fuzzy product of A and $B, A \circ B$, is defined as follow : For each $x \in X$,

$$
(A \circ B)^{L}(x)= \begin{cases}\bigvee_{(y, z) \in X \times X}\left(A^{L}(y) \wedge B^{L}(z)\right) & \text { if } \mathrm{x}=\mathrm{yz} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
(A \circ B)^{U}(x)= \begin{cases}\bigvee_{(y, z) \in X \times X}\left(A^{U}(y) \wedge B^{U}(z)\right) & \text { if } \mathrm{x}=\mathrm{yz} \\ 0 & \text { otherwise }\end{cases}
$$

Similarly, we have the following definition.
Definition 4.7. Let A and B be any two IVIs of a ring R. Then the interval-valued fuzzy sum of A and $B, A+B$, is defined as follow : For each $x \in X$,

$$
(A+B)^{L}(x)= \begin{cases}\bigvee_{(y, z) \in X \times X}\left(A^{L}(y) \wedge B^{L}(z)\right) & \text { if } \mathrm{x}=\mathrm{y}+\mathrm{z} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
(A+B)^{U}(x)= \begin{cases}\bigvee_{(y, z) \in X \times X}\left(A^{U}(y) \wedge B^{U}(z)\right) & \text { if } \mathrm{x}=\mathrm{y}+\mathrm{z} \\ 0 & \text { otherwise }\end{cases}
$$

This section reflects the effect of a homomorphism on the sum, product and intersection of any two IVIs of a ring.

Proposition 4.8. Let $f: R \rightarrow R^{\prime}$ be a ring epimorphism. If A and B are IVIs of R, then
(a) $f(A+B)=f(A)+f(B)$,
(b) $f(A \circ B)=f(A) \circ f(B)$,
(c) $f(A \cap B)=f(A) \cap f(B)$, with equality if at least one of A or B is IVF-invariant.

Proof. (a) Let $y \in R^{\prime}$ and let $\epsilon>0$ be arbitrary. Let $\left[\alpha, \alpha^{\prime}\right]=f(A+$ $B)(y)$ and let $\left[\beta, \beta^{\prime}\right]=(f(A)+f(B))(y)$.
Then

$$
\begin{aligned}
\alpha & =f(A+B)^{L}(y)=\bigvee_{z \in f^{-1}(y)}(A+B)^{L}(z), \\
\alpha^{\prime} & =f(A+B)^{U}(y)=\bigvee_{z \in f^{-1}(y)}(A+B)^{U}(z)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta & =(f(A)+f(B))^{L}(y)=\bigvee_{y=z+z^{\prime}}\left(f(A)^{L}(z) \wedge f(B)^{L}\left(z^{\prime}\right)\right), \\
\beta^{\prime} & =(f(A)+f(B))^{U}(y)=\bigvee_{y=z+z^{\prime}}\left(f(A)^{U}(z) \wedge f(B)^{U}\left(z^{\prime}\right)\right) .
\end{aligned}
$$

Thus $\alpha-\epsilon<\bigvee_{z \in f^{-1}(y)}(A+B)^{L}(z)$ and $\alpha^{\prime}-\epsilon<\bigvee_{z \in f^{-1}(y)}(A+B)^{U}(z)$. So there exist $z_{0}, z_{0}^{\prime} \in R$ with $f\left(z_{0}\right)=y$ and $f\left(z_{0}^{\prime}\right)=y$ such that $\alpha-\epsilon<(A+B)^{L}\left(z_{0}\right)$ and $\alpha-\epsilon<(A+B)^{U}\left(z_{0}^{\prime}\right)$. By the definition of sum,
$\alpha-\epsilon<\bigvee_{z_{0}=a+b}\left(A^{L}(a) \wedge B^{L}(b)\right)$ and $\alpha^{\prime}-\epsilon<\bigvee_{z_{0}^{\prime}=a^{\prime}+b^{\prime}}\left(A^{L}\left(a^{\prime}\right) \wedge\right.$ $\left.B^{L}\left(b^{\prime}\right)\right)$.
Then there exist $a_{0}, b_{0} \in R$ with $z_{0}=a_{0}+b_{0}$ such that $\alpha-\epsilon<\left(A^{L}\left(a_{0}\right) \wedge\right.$ $\left.B^{L}\left(b_{0}\right)\right)$ and there exist $a_{0}^{\prime}, b_{0}^{\prime} \in R$ with $z_{0}^{\prime}=a_{0}^{\prime}+b_{0}^{\prime}$ such that $\alpha^{\prime}-\epsilon<$ $\left(A^{U}\left(a_{0}^{\prime}\right) \wedge B^{U}\left(b_{0}^{\prime}\right)\right)$.

On the other hand,

$$
\begin{aligned}
\beta & \geq f(A)^{L}\left(f\left(a_{0}\right)\right) \wedge f(B)^{L}\left(f\left(b_{0}\right)\right) \\
& =f\left(A^{L}\right)\left(f\left(a_{0}\right)\right) \wedge f\left(B^{L}\right)\left(f\left(b_{0}\right)\right) \\
& =f^{-1}\left(f\left(A^{L}\right)\right)\left(a_{0}\right) \wedge f^{-1}\left(f\left(B^{L}\right)\right)\left(b_{0}\right) \\
& \geq A^{L}\left(a_{0}\right) \wedge B^{L}\left(b_{0}\right)
\end{aligned}
$$

Similarly, we have $\beta^{\prime} \geq A^{U}\left(a_{0}^{\prime}\right) \wedge B^{U}\left(b_{0}^{\prime}\right)$. So $\beta>\alpha-\epsilon$ and $\beta^{\prime}>\alpha^{\prime}-\epsilon$.
Since ϵ is arbitrary, $\beta \geq \alpha$ and $\beta^{\prime} \geq \alpha^{\prime}$. Hence

$$
\begin{equation*}
[f(A)+f(B)]^{L}(y) \geq f(A+B)^{\bar{L}}(y) \text { for each } y \in R^{\prime} \tag{4.1}
\end{equation*}
$$

Now we will show that $\beta \leq \alpha$ and $\beta^{\prime} \leq \alpha^{\prime}$. Clearly,

$$
\beta-\epsilon<\bigvee_{y=z+z^{\prime}}\left(f(A)^{\bar{L}}(z) \wedge f(B)^{\bar{L}}\left(z^{\prime}\right)\right)
$$

and

$$
\beta-\epsilon<\bigvee_{y=z+z^{\prime}}\left(f(A)^{U}(z) \wedge f(B)^{U}\left(z^{\prime}\right)\right)
$$

Then there exist $z_{1}, z_{1}^{\prime} \in R^{\prime}$ with $y=z_{1}+z_{1}^{\prime}$ such that

$$
\beta-\epsilon<f(A)^{L}\left(z_{1}\right)=\bigvee_{x \in f^{-1}\left(z_{1}\right)} A^{L}(x)
$$

and

$$
\beta-\epsilon<f(B)^{L}\left(z_{1}\right)=\bigvee_{x \in f^{-1}\left(z_{1}^{\prime}\right)} A^{L}(x)
$$

Hence there exist $z_{0}, z_{0}^{\prime} \in R^{\prime}$ with $y=z_{0}+z_{0}^{\prime}$ such that

$$
\beta-\epsilon<f(A)^{U}\left(z_{0}\right)=\bigwedge_{x \in f^{-1}\left(z_{0}\right)} A^{U}(x)
$$

and

$$
\beta-\epsilon<f(B)^{U}\left(z_{0}^{\prime}\right)=\bigwedge_{x \in f^{-1}\left(z_{0}^{\prime}\right)} B^{U}(x)
$$

Thus there exist $x_{1}, x_{1}^{\prime} \in R$ with $f\left(x_{1}\right)=z_{1}, f\left(x_{1}^{\prime}\right)=z_{1}^{\prime}$ such that

$$
\beta-\epsilon<A^{L}\left(x_{1}\right), \beta-\epsilon<B^{L}\left(x_{1}^{\prime}\right)
$$

and
there exist $x_{0}, x_{0}^{\prime} \in R$ with $f\left(x_{0}\right)=z_{0}, f\left(x_{0}^{\prime}\right)=z_{0}^{\prime}$ such that
$\beta-\epsilon<f^{U}\left(x_{0}\right), \beta-\epsilon<B^{U}\left(x_{0}^{\prime}\right)$. So

$$
\begin{aligned}
\beta-\epsilon & <A^{L}\left(x_{1}\right) \wedge B^{L}\left(x_{1}^{\prime}\right) \leq(A+B)^{L}\left(x_{1}+x_{1}^{\prime}\right) \\
& \leq \bigvee_{x \in f^{-1}(y)}(A+B)^{L}(x)=f(A+B)^{L}(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta^{\prime}-\epsilon & <A^{U}\left(x_{0}\right) \wedge B^{U}\left(x_{0}^{\prime}\right) \leq(A+B)^{U}\left(x_{0}+x_{0}^{\prime}\right) \\
& \leq \bigvee_{x \in f^{-1}(y)}(A+B)^{U}(x)=f(A+B)^{U}(y)
\end{aligned}
$$

Hence $\beta-\epsilon<\alpha$ and $\beta^{\prime}-\epsilon<\alpha^{\prime}$. Since $\epsilon>0$ is arbitrary, $\beta \leq \alpha$ and $\beta^{\prime} \leq \alpha^{\prime}$. So

$$
(f(A)+f(B))(y) \leq f(A+B)(y) \text { for each } y \in R^{\prime}
$$

Therefore, by (4.1) and (4.2), $f(A)+f(B)=f(A+B)$.
(b) Let $y \in R^{\prime}$ and let $\epsilon>0$ be arbitrary. Let $\left[\alpha, \alpha^{\prime}\right]=f(A \circ B)(y)$ and $\left[\beta, \beta^{\prime}\right]=(f(A) \circ f(B))(y)$. Then

$$
\begin{align*}
\alpha & =f(A \circ B)^{L}(y)=\bigvee_{x \in f^{-1}(y)}(A \circ B)^{L}(z) \\
\alpha^{\prime} & =f(A \circ B)^{U}(y)=\bigvee_{x \in f^{-1}(y)}(A \circ B)^{U}(z) \tag{4.3}
\end{align*}
$$

and

$$
\begin{align*}
\beta & =(f(A) \circ f(B))^{L}(y)=\bigvee_{y=y_{1} y_{2}}\left(f(A)^{L}\left(y_{1}\right) \wedge f(B)^{L}\left(y_{2}\right)\right) \\
\beta^{\prime} & =(f(A) \circ f(B))^{U}(y)=\bigvee_{y=y_{1} y_{2}}\left(f(A)^{U}\left(y_{1}\right) \wedge f(B)^{U}\left(y_{2}\right)\right) \tag{4.4}
\end{align*}
$$

In (4.3), $\alpha-\epsilon<\bigvee_{z \in f^{-1}(y)}(A \circ B)^{L}(z)$ and $\alpha^{\prime}-\epsilon<\bigvee_{z \in f^{-1}(y)}(A \circ$ $B)^{U}(z)$. Thus there exist $x, x^{\prime} \in f^{-1}(y)$ such that $\alpha-\epsilon<(A \circ B)^{L}(x)$ and $\alpha^{\prime}-\epsilon<(A \circ B)^{U}(x)$. Since $(A \circ B)^{L}(x)=\bigvee_{x=x_{1} x_{2}}\left(A^{L}\left(x_{1}\right) \wedge B^{L}\left(x_{2}\right)\right)$ and $(A \circ B)^{U}\left(x^{\prime}\right)=\bigvee_{x^{\prime}=x_{1}^{\prime} x_{2}^{\prime}}\left(A^{U}\left(x_{1}^{\prime}\right) \wedge B^{U}\left(x_{2}^{\prime}\right)\right)$, there exist $x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime} \in R$ with $x=x_{1} x_{2}$ and $x^{\prime}=x_{1}^{\prime} x_{2}^{\prime}$ such that $\alpha-\epsilon<A^{L}\left(x_{1}\right) \wedge B^{L}\left(x_{2}\right)$ and $\alpha^{\prime}-\epsilon<A^{U}\left(x_{1}^{\prime}\right) \wedge B^{U}\left(x_{2}^{\prime}\right)$. Since $A \subset f^{-1}(f(A))$, by Result 2.B(f), $A^{L} \leq f^{-1}(f(A))^{L}$ and $A^{U} \leq f^{-1}(f(A))^{U}$. On the other hand,

$$
f^{-1}(f(A))^{L}=f^{-1}\left(f(A)^{L}\right)=f^{-1}\left(f\left(A^{L}\right)\right)
$$

and

$$
\begin{aligned}
& f^{-1}(f(A))^{U}=f^{-1}\left(f(A)^{U}\right)=f^{-1}\left(f\left(A^{U}\right)\right) \text { Thus } \\
& \qquad \begin{aligned}
\alpha-\epsilon & <f^{-1}\left(f(A)^{L}\right)\left(x_{1}\right) \wedge f^{-1}\left(f(B)^{L}\right)\left(x_{2}\right) \\
& =f(A)^{L}\left(f\left(x_{1}\right)\right) \wedge f(B)^{L}\left(f\left(x_{2}\right)\right) \\
& \leq \bigvee_{y=y_{1} y_{2}}\left(f(A)^{L}\left(y_{1}\right) \wedge f(B)^{L}\left(y_{2}\right)\right) \\
& =(f(A) \circ f(B))^{L}(y)=\beta
\end{aligned}
\end{aligned}
$$

By the similar arguments, we have that $\alpha^{\prime}-\epsilon \leq(f(A) \circ f(B))^{U}(y)=\beta^{\prime}$. Since $\epsilon>0$ is arbitrary, $\alpha \leq \beta$ and $\alpha^{\prime} \leq \beta^{\prime}$. In (4.4),

$$
\begin{aligned}
\beta-\epsilon & <\bigvee_{y=y_{1} y_{2}}\left(f(A)^{L}\left(y_{1}\right) \wedge f(B)^{L}\left(y_{2}\right)\right)\left(y_{2}\right) \\
& =\bigvee_{y=y_{1} y_{2}}\left(\left(\bigvee_{z_{1} \in f^{-1}\left(y_{1}\right)} A^{L}\left(z_{1}\right)\right) \wedge\left(\bigvee_{z_{2} \in f^{-1}\left(y_{2}\right)} B^{L}\left(z_{2}\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta^{\prime}-\epsilon & <\bigvee_{y=y_{1} y_{2}}\left(f(A)^{U}\left(y_{1}\right) \wedge f(B)^{U}\left(y_{2}\right)\right) \\
& =\bigvee_{y=y_{1} y_{2}}\left(\left(\bigvee_{z_{1} \in f^{-1}\left(y_{1}\right)} A^{U}\left(z_{1}\right)\right) \wedge\left(\bigvee_{z_{2} \in f^{-1}\left(y_{2}\right)} B^{U}\left(z_{2}\right)\right)\right) .
\end{aligned}
$$

Thus there exist $y_{1}, y_{2} \in R^{\prime}$ with $y=y_{1} y_{2}$ such that

$$
\begin{aligned}
\beta-\epsilon & <\left(\bigvee_{z_{1} \in f^{-1}\left(y_{1}\right)} A^{L}\left(z_{1}\right)\right) \wedge\left(\bigvee_{z_{2} \in f^{-1}\left(y_{2}\right)} B^{L}\left(z_{2}\right)\right) \\
& =\bigvee_{z_{1} \in f^{-1}\left(y_{1}\right)} \bigvee_{z_{2} \in f^{-1}\left(y_{2}\right)}\left(A^{L}\left(z_{1}\right) \wedge B^{L}\left(z_{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta^{\prime}-\epsilon & <\left(\bigvee_{z_{1} \in f^{-1}\left(y_{1}\right)} A^{U}\left(z_{1}\right)\right) \wedge\left(\bigvee_{z_{2} \in f^{-1}\left(y_{2}\right)} B^{U}\left(z_{2}\right)\right) \\
& =\bigvee_{z_{1} \in f^{-1}\left(y_{1}\right)} \bigvee_{z_{2} \in f^{-1}\left(y_{2}\right)}\left(A^{U}\left(z_{1}\right) \wedge B^{U}\left(z_{2}\right)\right)
\end{aligned}
$$

So there exist $x_{1} \in f^{-1}\left(y_{1}\right)$ and $x_{2} \in f^{-1}\left(y_{2}\right)$ such that $\beta-\epsilon<A^{L}\left(x_{1}\right) \wedge$ $B^{L}\left(x_{2}\right)$ and $\beta-\epsilon<A^{U}\left(x_{1}\right) \wedge B^{U}\left(x_{2}\right)$.

Let $x=x_{1} x_{2}$. Since f is a ring homomorphism, $y=y_{1} y_{2}=f\left(x_{1} x_{2}\right)=$ $f(x)$. Thus

$$
\begin{aligned}
A^{L}\left(x_{1}\right) \wedge B^{L}\left(x_{2}\right) & \leq \bigvee_{x=x_{1} x_{2}}\left(A^{L}\left(x_{1}\right) \wedge B^{L}\left(x_{2}\right)\right) \\
& =(A \circ B)^{L} \leq \bigvee_{x \in f^{-1}(y)}(A \circ B)^{L}(x) \\
& =f(A \circ B)^{L}(y)=\alpha
\end{aligned}
$$

By the similar arguments, we have that $A^{U}\left(x_{1}\right) \wedge B^{U}\left(x_{2}\right) \leq f(A \circ$ $B)^{U}(y)=\alpha^{\prime}$. So $\beta-\epsilon<\alpha$ and $\beta^{\prime}-\epsilon<\alpha^{\prime}$. Since $\epsilon>0$ is arbitrary, $\beta \leq \alpha$ and $\beta^{\prime} \leq \alpha^{\prime}$. Hence $[\alpha, \beta]=\left[\alpha^{\prime}, \beta^{\prime}\right]$. Therefore $f(A \circ B)=f(A) \circ f(B)$.
(c) Clearly, $A \cap B \subset A$ and $A \cap B \subset B$. By Result 2.B(d), $f(A \cap B) \subset$ $f(B)$. So $f(A \cap B) \subset f(A) \cap f(B)$. Suppose B is IVF-invariant. Then clearly, $f^{-1}(f(B))=B$. Let $y \in R^{\prime}$ and let $\epsilon>0$ is arbitrary. Let $[\alpha, \beta]=(f(A) \cap f(B))(y)$ and let $\left[\alpha^{\prime}, \beta^{\prime}\right]=(f(A) \cap f(B))(y)$. Then
$\alpha=(f(A) \cap f(B))^{L}(y)=\left(\bigvee_{x \in f^{-1}(y)} A^{L}(x)\right) \wedge f(B)^{L}(y)$
and

$$
\beta=(f(A) \cap f(B))^{U}(y)=\left(\bigvee_{x \in f^{-1}(y)} A^{U}(x)\right) \wedge f(B)^{U}(y) .
$$

Thus $\alpha-\epsilon<\left(\bigvee_{x \in f^{-1}(y)} A^{L}(x)\right) \wedge f(B)^{L}(y)$ and $\beta-\epsilon<\left(\bigvee_{x \in f^{-1}(y)} A^{U}(x)\right) \wedge$ $f(B)^{U}(y)$. So there exists an $x \in f^{-1}(y)$ such that
$\alpha-\epsilon<A^{L}(x), \alpha-\epsilon<f(B)^{L}(y)$
and

$$
\beta-\epsilon<A^{U}(x), \alpha-\epsilon<f(B)^{U}(y) .
$$

Since B is IVF-invariant, $f^{-1}(f(B))=B$. Then

$$
f(B)^{L}(y)=f(B)^{L}(f(x))=f^{-1}\left(f(B)^{L}\right)(x)=f^{-1}\left(f\left(B^{L}\right)\right)(x)=
$$ $B^{L}(x)$

and
$f(B)^{U}(y)=f(B)^{U}(f(x))=f^{-1}\left(f(B)^{U}\right)(x)=f^{-1}\left(f\left(B^{U}\right)\right)(x)=$ $B^{U}(x)$.
Thus $\alpha-\epsilon<A^{L}(x), \alpha-\epsilon<B^{L}(x)$ and $\beta-\epsilon<A^{U}(x), \beta-\epsilon<B^{U}(x)$. So $\alpha-\epsilon<A^{L}(x) \wedge B^{L}(x)=(A \cap B)^{L}(x)$ and $\beta-\epsilon<A^{U}(x) \wedge B^{U}(x)=$ $(A \cap B)^{L}(x)$.
Hence

$$
\alpha-\epsilon<\bigvee_{x \in f^{-1}(y)}(A \cap B)^{L}(x)=\left(f(A \cap B)^{L}\right)(y)=\alpha^{\prime}
$$

and

$$
\alpha-\epsilon<\bigvee_{x \in f^{-1}(y)}(A \cap B)^{U}(x)=\left(f(A \cap B)^{U}\right)(y)=\beta^{\prime} . \text { Since } \epsilon>0 \text { is }
$$ arbitrary, $\alpha \leq \alpha^{\prime}$ and $\beta \leq \beta^{\prime}$. Thus $f(A) \cap f(B) \subset f(A \cap B)$. Therefore $f(A) \cap f(B)=f(A \cap B)$.

5. Interval-valued fuzzy cosets

Definition 5.1. Let A be any IVI of a ring R and let $x \in R$. Then $A_{x} \in D(I)^{R}$ is called the interval-valued fuzzy coset determined by x and A if $A_{x}(r)=A(r-x)$ for each $r \in R$.

Proposition 5.2. Let R be any IVI of a ring R and let R / A the set of all interval-valued fuzzy cosets of A in R. Then R / A is a ring under the following operations:

$$
A_{x}+A_{y}=A_{x+y} \text { and } A_{x} A_{y}=A_{x y} \text { for any } x, y \in R .
$$

Proof. For any $a, b, c, d \in R$, suppose $A_{a}=A_{b}$ and $A_{c}=A_{d}$. Then $A(r-a)=A(r-b)$ for each $r \in R(5.1)$
and
$A(r-c)=A(r-d)$ for each $r \in R .(5.2)$
Let $r=a+c-d$ in (5.1), $r=c$ in (5.2) and $r=a$ in (5.1). Then
$A(a+c-d-a)=A(a+c-d-b)=A(c-d)$,
$A(c-c)=A(c-d)=A(0)(5.3)$
and

$$
\begin{aligned}
A(a-a)=A(a-b) & =A(0) .(5.4) \text { On the other hand, } \\
\left(A_{a}+A_{c}\right)^{L}(r) & =A_{a+c}^{L}(r)=A^{L}(r-a-c) \\
& =A^{L}((r-b-d)-(a+c-b-d)) \\
& \geq A^{L}(r-b-d) \wedge A^{L}(a+c-b-d) \\
& =A^{L}(r-b-d) \wedge A^{L}(0)(\operatorname{By}(5.3)) \\
& =A^{L}(r-b-d) \\
& =A_{b+d}^{L}(r)=\left(A_{b}+A_{d}\right)^{L}(r) .
\end{aligned}
$$

By the similar arguments, we have that $\left(A_{a}+A_{c}\right)^{U}(r)=\left(A_{b}+A_{d}\right)^{U}(r)$. Thus $A_{a}+A_{d} \subset A_{a}+A_{c}$. Similarly, we have $A_{a}+A_{c} \subset A_{b}+A_{d}$. So $A_{a}+A_{c}=A_{b}+A_{d}$. Hence addition is well-defined. Also,

$$
\begin{aligned}
\left(A_{a} A_{c}\right)^{L}(r) & =A_{a c}^{L}(r)=A^{L}(r-a c) \\
& =A^{L}((r-b d)-(a c-b d)) \\
& \geq A^{L}(r-b d) \wedge A^{L}(a c-b d) \\
& =A^{L}(r-b d) \wedge A^{L}((a-b) c-b(d-c))(\text { By }(5.3) \text { and }(5.4)) \\
& \left.\geq A^{L}(r-b d) \wedge A^{L}(a-b) A^{L}(d-c)\right) \\
& =A^{L}(r-b d) \wedge A^{L}(0) A^{L}(0)(\text { By }(5.4) \text { and }(5.5)) \\
& =A^{L}(r-b d)=A_{b d}^{L}(r)=A_{b}^{L} A_{d}^{L}(r) .
\end{aligned}
$$

By the similar arguments, we have that $\left(A_{a} A_{c}\right)^{U}(r)=\left(A_{b} A_{d}\right)^{U}(r)$. Thus $A_{b} A_{d} \subset A_{a} A_{c}$. Similarly, we have $A_{a} A_{c} \subset A_{b} A_{d}$. So $A_{b} A_{d}=A_{a} A_{c}$. Hence multiplication is well-defined. Clearly, $A_{0}(=A)$ acts as the additive identity, A_{e} as the multiplicative identity (where e is the multiplicative identity of R) and A_{-x} as additive inverse of A_{x}. It is now a purely routine matter to verify the other properties. This completes the proof.

Lemma 5.3. Let A be any IVR or an IVI of a ring R. If there exist $x, y \in R$ such that $A^{L}(x)<A^{L}(y)$ and $A^{U}(x)<A^{U}(y)$, then $A(x-y)=A(x)=A(y-x)$.

Proof. Since A is an IVG of R with respect to " + ", by Result 4.A, $A(x-y)=A(y-x)$. Thus it is sufficient to show that $A(x-y)=A(x)$. Since $A^{L}(x)<A^{L}(y), A^{U}(x)<A^{U}(y)$ and A is an IVR or an IVI of R, $A^{L}(x-y) \geq A^{L}(x) \wedge A^{L}(y)=A^{L}(x)$ and $A^{U}(x-y) \geq A^{U}(x) \wedge A^{U}(y)=$ $A^{U}(x)$. On the other hand, $A^{L}(x)=A^{L}(x-y+y) \geq A^{L}(x-y) \wedge A^{L}(y)$ and $A^{U}(x)=A^{U}(x-y+y) \geq A^{U}(x-y) \wedge A^{U}(y)$.Thus $A^{L}(x) \geq A^{L}(x-y)$ and $A^{U}(x) \geq A^{U}(x-y)$. So $A^{L}(x-y)=A(x)$. This completes the proof.

Lemma 5.4. If A is any IVI of a ring R, then $A(x)=A(0)$ if and only if $A_{x}=A_{0}$, where $x \in R$.

Proof. (\Rightarrow) : Suppose $A(x)=A(0)$. Since A is an IVG of R with respect to " + ", $A(r) \leq A(0)=A(r)$, i.e., $A^{L}(r) \leq A^{L}(0)=A^{L}(r)$ and $A^{U}(r) \leq A^{U}(0)=A^{U}(r)$ for each $r \in R$.

Case (i): Suppose $A(r)<A(x)$. Then, by Lemma 5.3, $A(r-x)=$ $A(x)$. Thus $A_{x}(r)=A_{0}(r)$ for each $r \in R$.

Case (ii): Suppose $A(r)=A(x)$. Then $x, r \in A^{[\lambda, \mu]}$, where $[\lambda, \mu]=$ $A(0)$. Since A is an IVG of $R, A^{[\lambda, \mu]}$ is a subgroup of R. Thus $x-r \in$ $A^{[\lambda, \mu]}$. Thus $A^{L}(x-r) \leq \lambda=A^{L}(0)$ and $A^{U}(x-r) \geq \mu=A^{U}(0)$. Since $A^{L}(x-r) \leq A^{L}(0)$ and $A^{U}(x-r) \leq A^{U}(0), A^{L}(x-r)=A^{L}(0)$ and $A^{U}(x-r)=A^{U}(0)$. Thus $A(x-r)=A(0)=A(x)=A(r)$, i.e., $A_{x}(r)=A_{0}(r)$ for each $r \in R$. In either case, $A_{x}(r)=A_{0}(r)$ for each $r \in R$. Hence $A_{x}=A_{0}$ for each $r \in R$.
(\Leftarrow) : It is straightforward.
Proposition 5.5. Let A be any IVI of a ring R and let $A(0)=[\lambda, \mu]$. Then $R / A^{[\lambda, \mu]} \cong R / A$.

Proof. Define a mapping $f: R \rightarrow R / A$ by $f(x)=A_{x}$ for each $r \in R$. Then it is easy to check that f is a ring epimorphism. By Lemma 5.4,

$$
\begin{aligned}
\text { Kerf } & =\left\{x \in R: f(x)=A_{0}\right\}=\left\{x \in R: A_{x}=A_{0}\right\} \\
& =\left\{x \in R: A(x)=A_{0}\right\}=A^{[\lambda, \mu]} .
\end{aligned}
$$

Hence $R / A^{[\lambda, \mu]} \cong R / A$.

Proposition 5.6. Let $f: R \rightarrow R^{\prime}$ be a ring epimorphism and let A be an IVI of R such that $A^{[\lambda, \mu]} \subset \operatorname{Kerf}$, where $[\lambda, \mu]=A(0)$. Then there exists a unique epimorphism $\bar{f}: R / A \rightarrow R^{\prime}$ such that $f=\bar{f} \circ g$, where $g(x)=A_{x}$ for each $r \in R$.

Proof. Define a mapping $\bar{f}: R_{A} \rightarrow R^{\prime}$ by $\bar{f}\left(A_{x}\right)=f(x)$ for each $r \in R$. Suppose $A_{x}=A_{y}$. Then $A_{x-y}=A_{0}=A_{x}=A_{y}$. By Lemma 5.4, $A(x-y)=A(x)$. Then $x-y \in A^{[\lambda, \mu]}$. Since $A^{[\lambda, \mu]} \subset \operatorname{Kerf}$, $x-y \in \operatorname{Kerf}$. Thus $f(x)=f(y)$, i.e., $\bar{f}\left(A_{x}\right)=\bar{f}\left(A_{y}\right)$. So \bar{f} is welldefined. Furthermore, since f is surjective, \bar{f} is also surjective. Moreover, it is easy to see that \bar{f} is a homomorphism.

Consider the following diagram:

Let $x \in R$. Then $f(x)=\bar{f}\left(A_{x}\right)=\bar{f}(g(x))=(\bar{f} \circ g)(x)$. Thus the above diagram commutes, i.e., $f=\bar{f} \circ g$.

Suppose there exists an epimorphism $h: R / A \rightarrow R^{\prime}$ such that $f=$ $h \circ g$. Let $x \in R$. Then $\bar{f}\left(A_{x}\right)=f(x)=(h \circ g)(x)=h(g(x))=h\left(A_{x}\right)$. Thus $\bar{f}=h$. So \bar{f} is unique. This completes the proof.

Corollary 5.6. The induced homomorphism \bar{f} is an isomorphism if and only if A is IVF-invariant.

Proof. (\Rightarrow) : Suppose \bar{f} is an isomorphism, i.e., \bar{f} is injective. For any $x, y \in R$, let $f(x)=f(y)$. Then $\bar{f}\left(A_{x}\right)=\bar{f}\left(A_{y}\right)$. Since \bar{f} is injective, $A_{x}=A_{y}$. Thus $A_{x-y}=A_{0}$. By Lemma 5.4, $A(x-y)=A(0)$. By Proposition 4.7 in [5], $A(x)=A(y)$. So A is IVF-invariant.
(\Leftarrow) : Suppose A is IVF-invariant and $\bar{f}\left(A_{x}\right)=\bar{f}\left(A_{y}\right)$. Then $f(x)=$ $f(0)$. Since A is IVF-invariant, $A(x)=A(0)$. By Lemma 5.4, $A_{x}=A_{0}$. So \bar{f} is injective. This completes the proof.

Proposition 5.7. Let $f: R \rightarrow R^{\prime}$ be a ring epimorphism and let A be an IVF-invariant IVI of R. Then $R / A=R^{\prime} / f(A)$.

Proof. Since A is IVF-invariant, $\operatorname{Kerf} \subset A^{[\lambda, \mu]}$, where $[\lambda, \mu]=A(0)$. Consider $f(A)\left(0^{\prime}\right)=\left[f\left(A^{L}\right)\left(0^{\prime}\right), f\left(A^{U}\right)\left(0^{\prime}\right)\right]$, where 0^{\prime} denotes the additive identity in R^{\prime}. Then

$$
f\left(A^{L}\right)\left(0^{\prime}\right)=\bigvee_{x \in f^{-1}\left(0^{\prime}\right)} A^{L}(x) \text { and } f\left(A^{U}\right)\left(0^{\prime}\right)=\bigvee_{x \in f^{-1}\left(0^{\prime}\right)} A^{U}(x)
$$

Since $f(0)=0^{\prime}$ and $A(x) \leq A(0)$, i.e., $A^{L}(x) \leq A^{L}(0), A^{U}(x) \leq A^{U}(0)$ for each $x \in R, A^{L}(x)=A^{L}(0)$ and $A^{U}(x)=A^{U}(0)$, i.e., $f(A)\left(0^{\prime}\right)=$ $A(0)=[\lambda, \mu]$. Now,

$$
\begin{aligned}
f(x) \in[f(A)]^{[\lambda, \mu]} & \Leftrightarrow f(A)^{L}(f(X)) \geq \lambda \text { and } f(A)^{U}(f(X)) \geq \mu \\
& \Leftrightarrow f\left(A^{L}\right)(f(x)) \geq \lambda \text { and } f\left(A^{U}\right)(f(x)) \geq \mu \\
& \Leftrightarrow f^{-1}\left(f\left(A^{L}\right)\right)(x) \geq \lambda \text { and } f^{-1}\left(f\left(A^{U}\right)\right)(x) \geq \mu \\
& \Leftrightarrow A^{L}(x) \geq \lambda \text { and } A^{U}(x) \geq \mu(\text { by Result } 4 . \mathrm{B}) \\
& \Leftrightarrow x \in A^{[\lambda, \mu]} \\
& \Leftrightarrow f(x) \in f\left(A^{[\lambda, \mu]}\right)\left(\text { Since } \operatorname{Ker} f \subset A^{[\lambda, \mu]}\right) .
\end{aligned}
$$

So $[f(A)]^{\lambda, \mu]}=f\left(A^{[\lambda, \mu]}\right)$. By Proposition 5.5, $R / A \cong R / A^{[\lambda, \mu]}$ and $R^{\prime} / f(A) \cong R /[f(A)]^{[\lambda, \mu]}$. Hence $R / A \cong R^{\prime} / f(A)$. This completes the proof.

References

[1] R.Biswas,Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy set and systems 63(1995) 87-90.
[2] J.Y.Choi, S.R.Kim and K.Hur, Interval-valued smooth topological spaces, Honam Math.J.32[4](2010), 711-738.
[3] M.B.Gorzalczany, A method of inference in approximate reasoning based on interval-values fuzzy, sets, Fuzzy sets and Systems 21(1987) 1-17.
[4] K. Hur, J.G.Lee and J.Y.Choi, Interval-valued fuzzy relations, J.Korean Institute of Intelligent systems 19(3)(2009)425-432
[5] H.W.Kang and K.Hur, Interval-valued fuzzy subgroups and rings, Honam. Math. J. 32.(4)(2010), 593-617.
[6] T.K.Mondal and S.K.Samanta,Topology of interval-valued fuzzy sets, Indian J.Pure Appl.Math.30(1)(1999) 20-38.
[7] L.A.Zadeh, Fuzzy sets, Inform. and Control 8(1965),338-353. K. Hur, H.W.Kang and H.K.Song,Intuitionistic fuzzy subgroups and subrings, Honam Math.J.25(1)(2003),19-41.
[8] -, The concept of a linguistic variable and its application to approximate reasoning I, Inform.Sci 8(1975) 199-249.

Hee Won Kang
Department of Mathematics Education, Woosuk University, Wanju-kun 570-749, Korea.
E-mail: khwon@woosuk.ac.kr

[^0]: Received August 31, 2011. Accepted September 14, 2011.
 2000 Mathematics Subject Classification. 03F55, 20 N25.
 Key words and phrases. interval-valued fuzzy subgroup, interval-valued fuzzy coset.

 This paper was supported by Woosuk University in 2011.

