Honam Mathematical J. **33** (2011), No. 4, pp. 499–518 http://dx.doi.org/10.5831/HMJ.2011.33.4.499

INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS

HEE WON KANG

Abstract. We obtain the interval-valued fuzzy subgroups generated by interval-valued fuzzy sets and some properties preserved by a ring homomorphism. Furthermore, we introduce the concepts of interval-valued fuzzy coset and study some of it's properties.

1. Introduction

In 1975, Zadeh[8] introduced the concept of interval-valued fuzzy sets as a generalization of fuzzy sets introduced by himself[7]. After then, Biswas[1] applied the notion of interval-valued fuzzy sets to group theory. Moreover, Gorzalczany[3] applied it to a method of inference in approximate reasoning, and Montal and Samanta[6] applied it to topology. Recently, Hur et al.[4] introduced the concept of an interval-valued fuzzy relations and obtained some of it's properties . Also, Choi et al.[2] applied it to topology in the sense of Šostak, Kang and Hur [5] applied it to algebra.

In this paper, we introduce the notion of interval-valued fuzzy cosets and investigate some of it's properties. Furthermore we obtain the interval-valued fuzzy subgroups generated by interval-valued fuzzy sets and study some properties preserved by a ring homomorphism.

2. Preliminaries

We will list some concepts and two results needed in the later sections.

Received August 31, 2011. Accepted September 14, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 03F55, 20N25.

Key words and phrases. interval-valued fuzzy subgroup, interval-valued fuzzy coset.

This paper was supported by Woosuk University in 2011.

Let D(I) be the set of all closed subintervals of the unit interval I = [0, 1]. The elements of D(I) are generally denoted by capital letters M, N, \dots , and note that $M = [M^L, M^U]$, where M^L and M^U are the lower and the upper end points respectively. Especially, we denoted, $\mathbf{0} = [0, 0], \mathbf{1} = [1, 1]$, and $\mathbf{a} = [a, a]$ for every $a \in (0, 1)$, We also note that

(i) $(\forall M, N \in D(I))$ $(M = N \Leftrightarrow M^L = N^L, M^U = N^U),$

(ii)
$$(\forall M, N \in D(I))$$
 $(M \le N \Leftrightarrow M^L \le N^L, M^U \le N^U).$

For every $M \in D(I)$, the *complement* of M, denoted by M^c , is defined by $M^c = 1 - M = [1 - M^U, 1 - M^L](\text{See}[6]).$

Definition 2.1[3,8]. A mapping $A: X \to D(I)$ is called an *interval-valued fuzzy set* (in short, IVFS) in X, denoted by $A = [A^L, A^U]$, if $A^L, A^U \in I^X$ such that $A^L \leq A^U$, *i.e.*, $A^L(x) \leq A^U(x)$ for each $x \in X$, where $A^L(x)$ [resp. $A^U(x)$] is called the *lower*[resp. *upper*] end point of x to A. For any $[a,b] \in D(I)$, the interval-valued fuzzy set A in X defined by $A(x) = [A^L(x), A^U(x)] = [a,b]$ for each $x \in X$ is denoted by [a,b] and if a = b, then the IVFS [a,b] is denoted by simply \tilde{a} . In particular, $\tilde{0}$ and $\tilde{1}$ denote the *interval-valued fuzzy empty set* and the *interval-valued fuzzy whole set* in X, respectively.

We will denote the set of all IVFSs in X as $D(I)^X$. It is clear that set $A = [A^L, A^U] \in D(I)^X$ for each $A \in I^X$.

Definition 2.2[6]. An IVFS A is called an *interval-valued fuzzy point* (in short, IVFP) in X with the support $x \in X$ and the value $[a, b] \in D(I)$ with b > 0, denoted by $A = x_{[a,b]}$, if for each $y \in X$,

$$A(y) = \begin{cases} [a,b] & \text{if } y = x, \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

In particular, if b = a, then $x_{[a,b]}$ is denoted by $x_{\mathbf{a}}$.

We will denote the set of all IVFPs in X as $IVF_P(X)$.

Definition 2.3[6]. Let
$$A, B \in D(I)^X$$
 and let $\{A_\alpha\}_{\alpha \in \Gamma} \subset D(I)^X$. Then:
(i) $A \subset B$ iff $A^L \leq B^L$ and $A^U \leq B^U$.
(ii) $A = B$ iff $A \subset B$ and $B \subset A$.
(iii) $A^c = [1 - A^U, 1 - A^L]$.
(iv) $A \cup B = [A^L \vee B^L, A^U \vee B^U]$.
(iv)' $\bigcup_{\alpha \in \Gamma} A_\alpha = [\bigvee_{\alpha \in \Gamma} A^L_\alpha, \bigvee_{\alpha \in \Gamma} A^U_\alpha]$.
(v) $A \cap B = [A^L \wedge B^L, A^U \wedge B^U]$.
(v)' $\bigcap_{\alpha \in \Gamma} A_\alpha = [\bigwedge_{\alpha \in \Gamma} A^L_\alpha, \bigwedge_{\alpha \in \Gamma} A^U_\alpha]$.

Result 2.A[6, Theorem 1]. Let $A, B, C \in D(I)^X$ and let $\{A_{\alpha}\}_{\alpha \in \Gamma} \subset D(I)^X$. Then:

$$\begin{split} &(\mathrm{a})\;\widetilde{0}\subset A\subset\widetilde{1}.\\ &(\mathrm{b})\;A\cup B=B\cup A\;,\;A\cap B=B\cap A.\\ &(\mathrm{c})\;A\cup (B\cup C)=(A\cup B)\cup C\;,\;A\cap (B\cap C)=(A\cap B)\cap C.\\ &(\mathrm{d})\;A,B\subset A\cup B\;,\;A\cap B\subset A,B.\\ &(\mathrm{e})\;A\cap (\bigcup_{\alpha\in\Gamma}A_{\alpha})=\bigcup_{\alpha\in\Gamma}(A\cap A_{\alpha}).\\ &(\mathrm{f})\;A\cup (\bigcap_{\alpha\in\Gamma}A_{\alpha})=\bigcap_{\alpha\in\Gamma}(A\cup A_{\alpha}).\\ &(\mathrm{g})\;(\widetilde{0})^c=\widetilde{1}\;,\;(\widetilde{1})^c=\widetilde{0}.\\ &(\mathrm{h})\;(A^c)^c=A.\\ &(\mathrm{i})\;(\bigcup_{\alpha\in\Gamma}A_{\alpha})^c=\bigcap_{\alpha\in\Gamma}A^c_{\alpha}\;,\;(\bigcap_{\alpha\in\Gamma}A_{\alpha})^c=\bigcup_{\alpha\in\Gamma}A^c_{\alpha}. \end{split}$$

Definition 2.4[7]. Let $A \in D(I)^X$ and let $x_M \in IVF_P(X)$. Then:

(i) The set $\{x\in X: A^U(x)>0\}$ is called the support of A and is denoted by S(A).

(ii) x_M said to belong to A, denoted by $x_M \in A$, if $M^L \leq A^L(x)$ and $M^U \leq A^U(x)$ for each $x \in X$.

It is obvious that $A = \bigcup_{x_M \in A} x_M$ and $x_M \in A$ if and only if $x_{M^L} \in A^L$ and $x_{M^U} \in A^U$.

Definition 2.5[6]. Let $f : X \to Y$ be a mapping, let $A = [A^L, A^U] \in D(I)^X$ and let $B = [B^L, B^U] \in D(I)^Y$. Then

(a) the *image of A under* f, denoted by f(A), is an IVFS in Y defined as follows: For each $y \in Y$,

$$f(A^{L})(y) = \begin{cases} \bigvee_{y=f(x)} A^{L}(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

and

$$f(A^U)(y) = \begin{cases} \bigvee_{y=f(x)} A^U(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

(b) the preimage of B under f, denoted by $f^{-1}(B)$, is an IVFS in Y defined as follows: For each $y \in Y$,

 $f^{-1}(B^L)(y) = (B^L \circ f)(x) = B^L(f(x))$ and

$$f^{-1}(B^U)(y) = (B^U \circ f)(x) = B^U(f(x)).$$

It can be easily seen that $f(A) = [f(A^L), f(A^U)]$ and $f^{-1}(B) = [f^{-1}(B^L), f^{-1}(B^U)]$.

Result 2.B[6, Theorem 2]. Let $f : X \to Y$ be a mapping and $g: Y \to Z$ be a mapping. Then

(a)
$$f^{-1}(B^c) = (f^{-1}(B))^c$$
, $\forall B \in D(I)^Y$.
(b) $[f(A)]^c \subset f(A^c)$, $\forall A \in D(I)^Y$.
(c) $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$, where $B_1, B_2 \in D(I)^Y$
(d) $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$, where $A_1, A_2 \in D(I)^X$.
(e) $f(f^{-1}(B)) \subset B$, $\forall B \in D(I)^Y$.
(f) $A \subset f(f^{-1}(A))$, $\forall A \in D(I)^Y$.
(g) $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$, $\forall C \in D(I)^Z$.
(h) $f^{-1}(\bigcup_{\alpha \in \Gamma} B_\alpha) = \bigcup_{\alpha \in \Gamma} f^{-1}B_\alpha$, where $\{B_\alpha\}_{\alpha \in \Gamma} \in D(I)^Y$.
(h) $f^{-1}(\bigcap_{\alpha \in \Gamma} B_\alpha) = \bigcap_{\alpha \in \Gamma} f^{-1}B_\alpha$, where $\{B_\alpha\}_{\alpha \in \Gamma} \in D(I)^Y$.

Definition 2.6[5]. An interval-valued fuzzy set A in G is called an *interval-valued fuzzy subgroupoid* (in short, IVGP) in G if

$$A^{L}(xy) \ge A^{L}(x) \land A^{L}(y) \text{ and } A^{U}(xy) \ge A^{U}(x) \land A^{U}(y), \forall x, y \in G.$$

It is clear that $0, 1 \in IVGP(G)$. We will denote the IVGPs in G as IVGP(G).

3. Interval-valued fuzzy subgroup generated by an intervalvalued fuzzy set

Definition 3.1[5]. Let A be an IVFS in a set X and let $[\lambda, \mu] \in D(I)$. Then the set $A^{[\lambda,\mu]} = \{x \in X : A^L(x) \ge \lambda \text{ and } A^U(x) \ge \mu\}$ is called a $[\lambda, \mu]$ -level subset of A.

The following is the immediate result of Definition 3.1.

Proposition 3.2. Let A be an IVFS in a set X and let $[\lambda_1, \mu_1], [\lambda_2, \mu_2] \in$ Im(A). If $\lambda_1 < \lambda_2$ and $\mu_1 < \mu_2$, then $A^{[\lambda_1, \mu_1]} \supset A^{[\lambda_2, \mu_2]}$.

Definition 3.3[5]. Let G be a group and let $A \in D(I)^G$. Then A is called an *interval-valued fuzzy subgroup* (in short, IVG) of G if it satisfies the following conditions :

(i) $A \in \text{IVGP}(G)$, i.e., $A^L(xy) \geq A^L(x) \wedge A^L(y)$ and $A^U(xy) \geq A^U(x) \wedge A^U(y), \forall x, y \in G.$ (ii) $A^L(x^{-1}) \geq A^L(x)$ and $A^U(x^{-1}) \geq A^U(x), \forall x, y \in G.$

We will denote the set of all IVGs of G as IVG (G).

Result 3.A[1, Proposition 3.1]. Let A be an IVG of a group G. Then $A(x^{-1}) = A(x)$ and $A^{L}(x) \leq A^{L}(e), A^{U}(x) \leq A^{U}(e)$ for each $x \in G$, where e is the identity element of G.

Result 3.B[5, Proposition 4.16 and 4.17]. Let A be an IVFS in a group G. Then $A \in IVG(G)$ if and only if $A^{[\lambda,\mu]}$ is a subgroup of G for each $[\lambda,\mu] \in Im(A)$.

Definition 3.4. Let A be an IVG of a group G and $[\lambda, \mu] \in \text{Im}(A)$. Then the subgroup $A^{[\lambda,\mu]}$ is called a $[\lambda,\mu]$ -level subgroup of A.

Lemma 3.5. Let A be any IVFS of a set X. Then $A^{L}(x) = \bigvee \{\lambda : x \in A^{[\lambda,\mu]}\}$ and $A^{U}(x) = \bigvee \{\mu : x \in A^{[\lambda,\mu]}\}$, where $x \in X$ and $[\lambda,\mu] \in D(I)$.

Proof. Let $\alpha = \bigvee \{\lambda : x \in A^{[\lambda,\mu]}\}$, let $\beta = \bigvee \{\mu : x \in A^{[\lambda,\mu]}\}$ and let $\epsilon > 0$ be arbitrary. Then $\alpha - \epsilon < \bigvee \{\lambda : x \in A^{[\lambda,\mu]}\}$ and

 $\begin{array}{l} \beta - \epsilon < \bigvee \{ \mu : x \in A^{[\lambda,\mu]} \}. \text{ Thus there exist } [\lambda,\mu] \in D(I) \text{ such that} \\ x \in A^{[\lambda,\mu]}, \alpha - \epsilon < \lambda \text{ and } \beta - \epsilon < \mu. \text{ Since } x \in A^{[\lambda,\mu]}, A^L(x) \geq \lambda \text{ and} \\ A^U(x) \geq \mu. \text{ Thus } A^L(x) > \alpha - \epsilon \text{ and } A^U(x) > \beta - \epsilon. \text{ Since } \epsilon > 0 \text{ is arbitrary}, \\ A^L(x) \geq \alpha \text{ and } A^U(x) \geq \beta. \text{ We now show that } A^L(x) \leq \alpha \text{ and} \\ A^U(x) \leq \beta. \text{ Suppose } A^L(x) = t_1 \text{ and } A^U(x) = t_2. \text{ Then } [t_1, t_2] \in \text{Im}(A). \\ \text{Thus } x \in A^{[t_1, t_2]}. \text{ So } t_1 \in \{\lambda : x \in A^{[\lambda, \mu]}\} \text{ and } t_2 \in \{\lambda : x \in A^{[\lambda, \mu]}\}. \text{ So} \\ t_1 = \bigvee \{\lambda : x \in A^{[\lambda, \mu]}\} \text{ and } t_2 = \bigvee \{\mu : x \in A^{[\lambda, \mu]}\}, \text{ i.e. } A^L(x) \leq \alpha \text{ and} \\ A^U(x) \leq \beta. \text{ This completes the proof. } \Box \end{array}$

We shall denote by (A) the IVG generated by the IVFS A in G. We shall use the same notation $(A^{[\lambda,\mu]})$ for the ordinary subgroup of the group G generated by the level subset $A^{[\lambda,\mu]}$.

Theorem 3.6. Let G be group and let $A \in D(I)^G$. Let $A^* \in D(I)^G$ be defined as follows: For each $x \in G$,

 $(A^*)^L(x) = \bigvee \{\lambda : x \in (A^{[\lambda,\mu]})\}$ and $(A^*)^U(x) = \bigvee \{\mu : x \in (A^{[\lambda,\mu]})\},$ where $[\lambda,\mu] \in D(I)$. Then $A^* \in \text{IVG}(G)$ such that $A^* = \bigcap \{B \in \text{IVG}(G): A \subset B\}$. In this case, A^* is called the *interval-valued fuzzy* subgroup generated by A in G and will be denoted by (A).

Proof. Let $[t_1, t_2] \in \text{Im} (A^*)$ and $\alpha = t_1 - \frac{1}{n}$ and $\alpha = t_2 - \frac{1}{n}$, where *n* is any sufficiently large positive integer. Let $x \in G$. Suppose $x \in A^{*^{[t_1, t_2]}}$. Then $(A^*)^L(x) \ge t_1$ and $(A^*)^U(x) \ge t_2$. Thus there exist $[\lambda, \mu] \in D(I)$ such that $\lambda > \alpha$, $\mu > \beta$ and $x \in A^{[\lambda, \mu]}$. Since $[\alpha, \beta] < [\lambda, \mu]$ and $[\alpha, \beta] \in D(I)$, by Proposition 3.2, $A^{[\lambda, \mu]} \subset A^{[\alpha, \beta]}$. So $x \in A^{[\alpha, \beta]}$, i.e., $x \in (A^{[\alpha, \beta]})$. Now suppose $x \in (A^{[\lambda, \mu]})$. Then $\alpha \in \{\lambda : x \in (A^{[\lambda, \mu]})\}$ and $\beta \in \{\mu : x \in (A^{[\lambda, \mu]})\}$. Thus $\alpha \le \bigvee \{\lambda : x \in (A^{[\lambda, \mu]})\}$ and $\beta \le \bigvee \{\mu : x \in (A^{[\lambda, \mu]})\}$. So $t_1 - \frac{1}{n} \le (A^*)^L(x)$ and $t_2 - \frac{1}{n} \le (A^*)^U(x)$, i.e., $t_1 \le (A^*)^L(x)$ and $t_2 \le (A^*)^U(x)$. Hence $x \in A^{*^{[t_1, t_2]}}$, i.e., $(A^{*^{[\alpha, \beta]}}) \subset A^{*^{[t_1, t_2]}}$. Therefore $A^{*^{[t_1, t_2]}} = (A^{*^{[\alpha, \beta]}})$. Since $(A^{*^{[\alpha, \beta]}})$ is a subgroup of G, $A^{*^{[t_1, t_2]}}$ is a subgroup of G. By Result 3.B, $A^* \in \text{IVG}(G)$.

Now, we show that $A \subset A^*$. Let $x \in G$. Then, by Lemma 3.5, $(A^*)^L(x) = \bigvee \{\lambda : x \in A^{[\lambda,\mu]}\}$ and $(A^*)^U(x) = \bigvee \{\mu : x \in A^{[\lambda,\mu]}\}$. Thus $(A^*)^L(x) \leq \bigvee \{\lambda : x \in (A^{[\lambda,\mu]})\}$ and $(A^*)^U(x) \leq \bigvee \{\mu : x \in (A^{[\lambda,\mu]})\}$. So $A \subset A^*$. Finally, let B be any IVG of G such that $A \subset B$. We show that $A^* \subset B$. Let $x \in G$ and $A^*(x) = [t_1, t_2]$. Then $A^{*[t_1, t_2]} = (A^{[\alpha,\beta]})$, where $\alpha = t_1 - \frac{1}{n}, \beta = t_2 - \frac{1}{n}$, and n is any sufficiently large positive integer. Thus $x \in (A^{[\alpha,\beta]})$. So $x = a_1a_2 \cdots a_m$, where a_i or a_i^{-1} belongs to $A^{[\alpha,\beta]}(i = 1, \cdots, m)$.

On the other hand,

$$B^{L}(x) = B^{L}(a_{1}a_{2}\cdots a_{m})$$

$$\geq B^{L}(a_{1}) \wedge B^{L}(a_{2}) \wedge \cdots \wedge B^{L}(a_{m})$$

$$\geq A^{L}(a_{1}) \wedge A^{L}(a_{2}) \wedge \cdots \wedge A^{L}(a_{m})$$

$$\geq \alpha = t_{1} - \frac{1}{n}.$$

By the similar arguments, we have that $B^U(x) \ge \beta = t_2 - \frac{1}{n}$. Since n is sufficiently large positive integer, $B^L(x) \ge t_1$ and $B^U(x) \ge t_2$. So $A^* \subset B$. Hence $A^* = \bigcap \{B \in IVG(G) : A \subset B\}$. This completes the proof. \Box

It is possible that card Im (A^*) be less than card Im (A). Moreover, Im (A^*) need not be contained in Im (A) as shown in the following examples.

Example 3.7. let $G = \{e, a, b, c\}$ be the Klein four -group, where $a^2 = b^2 = e$ and ab = ba. Define an IVFS A of G by: A(e) = [0.5, 0.5], A(a) = [0.2, 0.8], A(b) = [0.3, 0.7], A(ab) = [0.4, 0.6]. Then $A^{[0.2, 0.8]} = \{a\}, A^{[0.3, 0.7]} = \{a, b\}, A^{[0.4, 0.6]} = \{a, b, ab\}$ and $A^{[0.5, 0.5]} = G$. Thus $(A^{[0.2, 0.8]}) = \{e, a\}$ and $(A^{[0.3, 0.7]}) = G$. Moreover, by definition, we have $A^*(e) = A^*(a) = [0.2, 0.8]$ and $A^*(b) = A^*(ab) = [0.3, 0.7]$. \Box

Now an attempt is made to obtain a necessary and sufficient condition for a p-group to be cyclic.

Lemma 3.8. Let G be a finite group. Suppose there exists $A \in IVG(G)$ satisfying the following conditions: For any $x, y \in G$,

(i) $A(x) = A(y) \Rightarrow (x) = (y)$. (ii) $A^{L}(x) > A^{L}(y)$ and $A^{U}(x) > A^{U}(y) \Rightarrow (x) \subset (y)$. Then G is cyclic.

Proof. Suppose A is constant on G. Then A(x) = A(y) for any $x, y \in G$. By the condition (i), (x) = (y). So G = (x). Now suppose A is not constant on G. Let Im $(A) = \{[t_0, s_0], [t_1, s_1], \dots, [t_n, s_n]\}$, where $t_0 > t_1 > \dots > t_n$ and $s_0 > s_1 > \dots > s_n$. Then, by Proposition 3.2 and Result 3.B, we obtain the chain of level subgroups of A: $A^{[t_0, s_0]} \subset A^{[t_1, s_1]} \subset \dots \subset A^{[t_n, s_n]} = G.$

Let $x \in G - A^{[t_{n-1}, s_{n-1}]}$. We show that G = (x). Let $g \in G - A^{[t_{n-1}, s_{n-1}]}$. Since $t_0 > t_1 > \cdots > t_n$ and $s_0 > s_1 > \cdots > s_n$, A(g) = A(x) =

 $A^{[t_{n-1},s_{n-1}]}$. By the condition (i), (g) = (x). Thus $G - A^{[t_{n-1},s_{n-1}]} \subset (x)$. Now let $g \in A^{[t_{n-1},s_{n-1}]}$. Then $A^L(g) \ge t_{n-1} > t_n = A^L(x)$ and $A^U(g) \ge s_{n-1} > s_n = A^U(x)$. By the condition (ii), (g) = (x). Thus $A^{[t_{n-1},s_{n-1}]} \subset (x)$. So G = (x). Hence, in either cases, G is cyclic. \Box

Lemma 3.9. Let G be a cyclic group of order p^n , where p is prime. Then there exists $A \in IVG(G)$ satisfying the following conditions: For any $x, y \in G$,

(i)
$$A(x) = A(y) \Rightarrow (x) = (y)$$
.
(ii) $A^L(x) > A^L(y)$ and $A^U(x) > A^U(y) \Rightarrow (x) \subset (y)$.

Proof. Consider the following chain of subgroups of G:

 $(e) = G_0 \subset G_1 \subset \cdots \subset G_{n-1} \subset G_n = G,$

where G_i is the subgroup of G generated by an element of order p^i , $i = 0, 1, \dots, n$ and e is the identity of G. We define a mapping $A : G \to D(I)$ as follows: For each $x \in G$, $A(e) = [t_0, s_0]$ and $A(x) = [t_i, s_i]$ if $x \in G_i - G_{i-1}$ for any $i = 1, 2, \dots, n$, where $[t_i, s_i] \in D(I)$ such that $t_0 > t_1 > \dots > t_n$ and $s_0 > s_1 > \dots > s_n$. Then we can easily check that $A \in IVG(G)$ satisfying the conditions (i) and (ii). \Box

From Lemmas 3.8 and 3.9, we obtain the following.

Theorem 3.10. Let G be a group of order p^n . Then G is cyclic if and only if there exists $A \in IVG(G)$ satisfying the following conditions: For any $x, y \in G$,

(i)
$$A(x) = A(y) \Rightarrow (x) = (y)$$
.

(ii) $A^L(x) > A^L(y)$ and $A^U(x) > A^U(y) \Rightarrow (x) \subset (y)$.

4. Interval-valued fuzzy ideals and homomorphisms

Definition 4.1[5]. Let $(R, +, \cdot)$ be a ring and let $\tilde{0} \neq A \in D(I)^R$. Then A is called an *interval- valued fuzzy subring* (in short, IVR) in R if it satisfies the following conditions:

(i) A is an IVG in R with respect to the operation "+" (in the sense of Definition 3.3).

(ii) A is an IVGP in R with respect to the operation " \cdot " (in the sense of Definition 2.6).

It is clear that subrings of R are IVRs of R. We will denote the set of all IVRs of R as IVR(R).

Definition 4.2[5]. Let R be a ring and let $\tilde{0} \neq A \in D(I)^R$. Then A is called an *interval- valued fuzzy ideal* (in short, IVI) of R if it satisfies the following conditions:

(i)
$$A$$
 is an IVR of R .

(ii) $A^L(xy) \ge A^L(x), A^U(xy) \ge A^U(x)$ and $A^L(xy) \ge A^L(y), A^U(xy) \ge A^U(y)$ for any $x, y \in R$.

We will denote the set of all IVIs of R as IVI(R).

Result 4.A[5, Proposition 6.5]. Let R be a ring and let $\tilde{0} \neq A \in D(I)^R$. Then $A \in IVR(R)$ if and only if for any $x, y \in R$, (i) $A^L(x-y) \ge A^L(x) \land A^L(y)$ and $A^U(x-y) \ge A^U(x) \land A^U(y)$.

(ii)
$$A^{L}(xy) \ge A^{L}(x) \wedge A^{L}(y)$$
 and $A^{U}(xy) \ge A^{U}(x) \wedge A^{U}(y)$.

It is clear that if A is an IVI(R), then $A(-x) = A(x) \le A(0)$ for each $x \in R$, where 0 is the identity in R with respect to "+".

Proposition 4.3. Let A be an IVFS in a ring R. Then $A \in IVI(R)$ if and only if $A^{[\lambda,\mu]}$ is an ideal of R for each $[\lambda,\mu] \in Im(A)$.

Proof. (\Rightarrow) : Suppose $A \in \text{IVI}(\mathbb{R})$. For each $[\lambda, \mu] \in \text{Im}(A)$, let $x, y \in A^{[\lambda,\mu]}$. Then $A^L(x) \geq \lambda, A^U(x) \geq \mu$ and $A^L(y) \geq \lambda, A^U(y) \geq \mu$. By Result 4.A (i), $A^L(x-y) \geq A^L(x) \wedge A^L(y)$ and $A^U(x-y) \geq A^U(x) \wedge A^U(y)$. Thus $A^L(x-y) \geq \lambda$ and $A^U(x-y) \geq \mu$. So $x-y \in A^{[\lambda,\mu]}$. Let $x \in R$ and $y \in A^{[\lambda,\mu]}$. Then $A^L(y) \geq \lambda$ and $A^U(y) \geq \mu$. Since $A \in \text{IVI}(\mathbb{R})$, by Result 4.A (ii), $A^L(xy) \geq A^L(x) \wedge A^L(y)$ and $A^U(xy) \geq A^U(x) \wedge A^U(y)$. Thus $A^L(xy) \geq \lambda$ and $A^U(xy) \geq \mu$. So $xy \in A^{[\lambda,\mu]}$. Similarly, we have $yx \in A^{[\lambda,\mu]}$. Hence $A^{[\lambda,\mu]}$ is an ideal of \mathbb{R} .

 $(\Leftarrow): \text{ Suppose the necessary holds. For any } x, y \in R, \text{ let } A(x) = [t_1, s_1] \text{ and } A(y) = [t_2, s_2]. \text{ Then clearly } x \in A^{[t_1, s_1]} \text{ and } y \in A^{[t_2, s_2]}.$ Since $A^{[t_1, s_1]}$ is an ideal of $R, x - y \in A^{[t_1, s_1]}$. Then $A^L(x - y) \ge t_1 \ge t_1 \land t_2 = A^L(x) \land A^L(y)$ and $A^U(x - y) \ge s_1 \ge s_1 \land s_2 = A^U(x) \land A^U(y).$ Thus A satisfies the condition (i) of Result 4.A. Now for each $x \in R$, let $A(x) = [\lambda, \mu]$. Then clearly $x \in A^{[\lambda, \mu]}$. Let $y \in R$. Since $A^{[\lambda, \mu]}$ is an ideal of $R, xy \in A^{[\lambda, \mu]} yx \in A^{[\lambda, \mu]}$. Then $A^L(xy) \ge \lambda = A^L(x), A^U(xy) \ge \mu = A^U(x)$ and $A^L(yx) \ge \lambda = A^L(y), A^U(yx) \ge \mu = A^U(y).$ Thus A satisfies

the condition (ii) of Definition 4.2. Hence A is an IVI of R. \Box

Example 4.4. Let R denote the ring of real numbers under the usual operations of addition and multiplication. We define a mapping $A : R \to D(I)$ as follows: For each $x \in R$,

 $A(x) = \begin{cases} [t,s] & \text{if x is rational,} \\ [t',s'] & \text{if x is irrational} \\ \text{where } [t,s], [t',s'] \in D(I) \text{ such that } t > t' \text{ and } s > s'. \text{ Then we can see that } A \in \text{IVR}(\mathbf{R}) \text{ but } A \notin \text{IVI}(\mathbf{R}). \ \Box \end{cases}$

Definition 4.5[5]. Let X and Y be sets, let $f : X \to Y$ be a mapping and let $A \in D(I)^X$. Then A is said to be *interval-valued fuzzy invariant*(in short, *IVF-invariant*) if f(x) = f(y) implies A(x) = A(y), i.e., $A^L(x) = A^L(y)$ and $A^U(x) = A^U(y)$.

It is clear that if A is IVF-invariant, then $f^{-1}(f(A)) = A$.

Definition 4.6[5]. Let (X, \circ) be a groupoid and let $A, B \in D(I)^X$. Then the *interval-valued fuzzy product* of A and B, $A \circ B$, is defined as follow : For each $x \in X$,

$$(A \circ B)^{L}(x) = \begin{cases} \bigvee_{\substack{(y,z) \in X \times X \\ 0 & \text{otherwise}} \end{cases}} (A^{L}(y) \wedge B^{L}(z)) & \text{if x=yz,} \\ 0 & \text{otherwise} \end{cases}$$

$$(A \circ B)^{U}(x) = \begin{cases} \bigvee_{(y,z) \in X \times X} (A^{U}(y) \wedge B^{U}(z)) & \text{if } x=yz, \\ 0 & \text{otherwise.} \end{cases}$$

Similarly, we have the following definition.

Definition 4.7. Let A and B be any two IVIs of a ring R. Then the *interval-valued fuzzy sum of* A and B, A + B, is defined as follow : For each $x \in X$,

$$(A+B)^{L}(x) = \begin{cases} \bigvee_{\substack{(y,z) \in X \times X \\ 0 & \text{otherwise}} \end{cases}} (A^{L}(y) \wedge B^{L}(z)) & \text{if } \mathbf{x} = \mathbf{y} + \mathbf{z}, \\ 0 & \text{otherwise} \end{cases}$$

and

Interval-Valued Fuzzy Subgroups and Homomorphisms

$$(A+B)^{U}(x) = \begin{cases} \bigvee_{\substack{(y,z) \in X \times X \\ 0}} (A^{U}(y) \wedge B^{U}(z)) & \text{if } x=y+z, \\ 0 & \text{otherwise} \end{cases}$$

This section reflects the effect of a homomorphism on the sum, product and intersection of any two IVIs of a ring.

Proposition 4.8. Let $f : R \to R'$ be a ring epimorphism. If A and B are IVIs of R, then

(a) f(A+B) = f(A) + f(B),

(b) $f(A \circ B) = f(A) \circ f(B)$,

(c) $f(A \cap B) = f(A) \cap f(B)$, with equality if at least one of A or B is IVF-invariant.

Proof. (a) Let $y \in R'$ and let $\epsilon > 0$ be arbitrary. Let $[\alpha, \alpha'] = f(A + B)(y)$ and let $[\beta, \beta'] = (f(A) + f(B))(y)$. Then

$$\begin{aligned} \alpha &= f(A+B)^{L}(y) = \bigvee_{z \in f^{-1}(y)} (A+B)^{L}(z), \\ \alpha' &= f(A+B)^{U}(y) = \bigvee_{z \in f^{-1}(y)} (A+B)^{U}(z) \end{aligned}$$

and

$$\beta = (f(A) + f(B))^{L}(y) = \bigvee_{\substack{y=z+z'}} (f(A)^{L}(z) \wedge f(B)^{L}(z')),$$

$$\beta' = (f(A) + f(B))^{U}(y) = \bigvee_{\substack{y=z+z'}} (f(A)^{U}(z) \wedge f(B)^{U}(z')).$$

Thus $\alpha - \epsilon < \bigvee_{z \in f^{-1}(y)} (A + B)^L(z)$ and $\alpha' - \epsilon < \bigvee_{z \in f^{-1}(y)} (A + B)^U(z)$. So there exist $z_0, z'_0 \in R$ with $f(z_0) = y$ and $f(z'_0) = y$ such that $\alpha - \epsilon < (A + B)^L(z_0)$ and $\alpha - \epsilon < (A + B)^U(z'_0)$. By the definition of sum,

$$\alpha - \epsilon < \bigvee_{z_0 = a+b} (A^L(a) \land B^L(b)) \text{ and } \alpha' - \epsilon < \bigvee_{z'_0 = a'+b'} (A^L(a') \land B^L(b')).$$

Then there exist $a_0, b_0 \in R$ with $z_0 = a_0 + b_0$ such that $\alpha - \epsilon < (A^L(a_0) \land B^L(b_0))$ and there exist $a'_0, b'_0 \in R$ with $z'_0 = a'_0 + b'_0$ such that $\alpha' - \epsilon < (A^U(a'_0) \land B^U(b'_0))$.

On the other hand,

$$\beta \geq f(A)^{L}(f(a_{0})) \wedge f(B)^{L}(f(b_{0})) \\ = f(A^{L})(f(a_{0})) \wedge f(B^{L})(f(b_{0})) \\ = f^{-1}(f(A^{L}))(a_{0}) \wedge f^{-1}(f(B^{L}))(b_{0}) \\ \geq A^{L}(a_{0}) \wedge B^{L}(b_{0}).$$

Similarly, we have $\beta' \geq A^U(a'_0) \wedge B^U(b'_0)$. So $\beta > \alpha - \epsilon$ and $\beta' > \alpha' - \epsilon$. Since ϵ is arbitrary, $\beta \geq \alpha$ and $\beta' \geq \alpha'$. Hence

 $[f(A) + f(B)]^{L}(y) \ge f(A + B)^{L}(y) \text{ for each } y \in R'.$ (4.1)

Now we will show that $\beta \leq \alpha$ and $\beta' \leq \alpha'$. Clearly, $\beta - \epsilon < \bigvee_{y=z+z'} (f(A)^L(z) \wedge f(B)^L(z'))$

and

$$\begin{split} \beta - \epsilon < \bigvee_{y=z+z'} (f(A)^U(z) \wedge f(B)^U(z')). \\ \text{Then there exist } z_1, z_1' \in R' \text{ with } y = z_1 + z_1' \text{ such that } \\ \beta - \epsilon < f(A)^L(z_1) = \bigvee_{x \in f^{-1}(z_1)} A^L(x) \end{split}$$

and

$$\beta - \epsilon < f(B)^{L}(z_{1}) = \bigvee_{x \in f^{-1}(z_{1}')} A^{L}(x).$$

Hence there exist $z_0, z'_0 \in R'$ with $y = z_0 + z'_0$ such that $\beta - \epsilon < f(A)^U(z_0) = \bigwedge_{x \in f^{-1}(z_0)} A^U(x)$

and

$$\beta - \epsilon < f(B)^U(z'_0) = \bigwedge_{x \in f^{-1}(z'_0)} B^U(x).$$

Thus there exist $x_1, x'_1 \in R$ with $f(x_1) = z_1, f(x'_1) = z'_1$ such that $\beta - \epsilon < A^L(x_1), \beta - \epsilon < B^L(x'_1)$

and

there exist $x_0, x'_0 \in R$ with $f(x_0) = z_0$, $f(x'_0) = z'_0$ such that $\beta - \epsilon < f^U(x_0), \beta - \epsilon < B^U(x'_0)$. So

$$\beta - \epsilon < A^{L}(x_{1}) \wedge B^{L}(x_{1}') \leq (A + B)^{L}(x_{1} + x_{1}')$$

$$\leq \bigvee_{x \in f^{-1}(y)} (A + B)^{L}(x) = f(A + B)^{L}(y)$$

and

$$\beta' - \epsilon < A^{U}(x_{0}) \wedge B^{U}(x_{0}') \leq (A + B)^{U}(x_{0} + x_{0}')$$
$$\leq \bigvee_{x \in f^{-1}(y)} (A + B)^{U}(x) = f(A + B)^{U}(y).$$

Hence $\beta - \epsilon < \alpha$ and $\beta' - \epsilon < \alpha'$. Since $\epsilon > 0$ is arbitrary, $\beta \le \alpha$ and $\beta' \le \alpha'$. So

 $(f(A) + f(B))(y) \le f(A + B)(y)$ for each $y \in R'$. (4.2) Therefore, by (4.1) and (4.2), f(A) + f(B) = f(A + B).

(b) Let $y \in R'$ and let $\epsilon > 0$ be arbitrary. Let $[\alpha, \alpha'] = f(A \circ B)(y)$ and $[\beta, \beta'] = (f(A) \circ f(B))(y)$. Then

$$\alpha = f(A \circ B)^{L}(y) = \bigvee_{x \in f^{-1}(y)} (A \circ B)^{L}(z),$$

$$\alpha' = f(A \circ B)^{U}(y) = \bigvee_{x \in f^{-1}(y)} (A \circ B)^{U}(z) (4.3)$$

and

$$\beta = (f(A) \circ f(B))^{L}(y) = \bigvee_{y=y_{1}y_{2}} (f(A)^{L}(y_{1}) \wedge f(B)^{L}(y_{2})),$$

$$\beta' = (f(A) \circ f(B))^{U}(y) = \bigvee_{y=y_{1}y_{2}} (f(A)^{U}(y_{1}) \wedge f(B)^{U}(y_{2})).$$
(4.4)

In (4.3), $\alpha - \epsilon < \bigvee_{z \in f^{-1}(y)} (A \circ B)^L(z)$ and $\alpha' - \epsilon < \bigvee_{z \in f^{-1}(y)} (A \circ B)^U(z)$. Thus there exist $x, x' \in f^{-1}(y)$ such that $\alpha - \epsilon < (A \circ B)^L(x)$ and $\alpha' - \epsilon < (A \circ B)^U(x)$. Since $(A \circ B)^L(x) = \bigvee_{x=x_1x_2} (A^L(x_1) \wedge B^L(x_2))$ and $(A \circ B)^U(x') = \bigvee_{x'=x_1'x_2'} (A^U(x_1') \wedge B^U(x_2'))$, there exist $x_1, x_2, x_1', x_2' \in R$ with $x = x_1x_2$ and $x' = x_1'x_2'$ such that $\alpha - \epsilon < A^L(x_1) \wedge B^L(x_2)$ and $\alpha' - \epsilon < A^U(x_1') \wedge B^U(x_2')$. Since $A \subset f^{-1}(f(A))$, by Result 2.B(f), $A^L \leq f^{-1}(f(A))^L$ and $A^U \leq f^{-1}(f(A))^U$. On the other hand, $f^{-1}(f(A))^L = f^{-1}(f(A)^L) = f^{-1}(f(A^U))$ and $f^{-1}(f(A))^U = f^{-1}(f(A)^U) = f^{-1}(f(A^U))$. Thus

$$\begin{aligned} \alpha - \epsilon &< f^{-1}(f(A)^{L})(x_{1}) \wedge f^{-1}(f(B)^{L})(x_{2}) \\ &= f(A)^{L}(f(x_{1})) \wedge f(B)^{L}(f(x_{2})) \\ &\leq \bigvee_{y=y_{1}y_{2}} (f(A)^{L}(y_{1}) \wedge f(B)^{L}(y_{2})) \\ &= (f(A) \circ f(B))^{L}(y) = \beta. \end{aligned}$$

By the similar arguments, we have that $\alpha' - \epsilon \leq (f(A) \circ f(B))^U(y) = \beta'$. Since $\epsilon > 0$ is arbitrary, $\alpha \leq \beta$ and $\alpha' \leq \beta'$. In (4.4),

$$\beta - \epsilon < \bigvee_{y=y_1y_2} (f(A)^L(y_1) \wedge f(B)^L(y_2))(y_2)$$

= $\bigvee_{y=y_1y_2} ((\bigvee_{z_1 \in f^{-1}(y_1)} A^L(z_1)) \wedge (\bigvee_{z_2 \in f^{-1}(y_2)} B^L(z_2)))$

and

$$\beta' - \epsilon < \bigvee_{y=y_1y_2} (f(A)^U(y_1) \wedge f(B)^U(y_2)) \\ = \bigvee_{y=y_1y_2} ((\bigvee_{z_1 \in f^{-1}(y_1)} A^U(z_1)) \wedge (\bigvee_{z_2 \in f^{-1}(y_2)} B^U(z_2))).$$

Thus there exist $y_1, y_2 \in R'$ with $y = y_1y_2$ such that

$$\beta - \epsilon < (\bigvee_{z_1 \in f^{-1}(y_1)} A^L(z_1)) \land (\bigvee_{z_2 \in f^{-1}(y_2)} B^L(z_2))$$

$$= \bigvee_{z_1 \in f^{-1}(y_1)} \bigvee_{z_2 \in f^{-1}(y_2)} (A^L(z_1) \land B^L(z_2))$$

and

$$\beta' - \epsilon < (\bigvee_{z_1 \in f^{-1}(y_1)} A^U(z_1)) \land (\bigvee_{z_2 \in f^{-1}(y_2)} B^U(z_2))$$
$$= \bigvee_{z_1 \in f^{-1}(y_1)} \bigvee_{z_2 \in f^{-1}(y_2)} (A^U(z_1) \land B^U(z_2)).$$

So there exist $x_1 \in f^{-1}(y_1)$ and $x_2 \in f^{-1}(y_2)$ such that $\beta - \epsilon < A^L(x_1) \land B^L(x_2)$ and $\beta - \epsilon < A^U(x_1) \land B^U(x_2)$.

Let $x = x_1 x_2$. Since f is a ring homomorphism, $y = y_1 y_2 = f(x_1 x_2) = f(x)$. Thus

$$A^{L}(x_{1}) \wedge B^{L}(x_{2}) \leq \bigvee_{\substack{x=x_{1}x_{2}}} (A^{L}(x_{1}) \wedge B^{L}(x_{2}))$$
$$= (A \circ B)^{L} \leq \bigvee_{\substack{x \in f^{-1}(y)}} (A \circ B)^{L}(x)$$
$$= f(A \circ B)^{L}(y) = \alpha$$

By the similar arguments, we have that $A^U(x_1) \wedge B^U(x_2) \leq f(A \circ B)^U(y) = \alpha'$. So $\beta - \epsilon < \alpha$ and $\beta' - \epsilon < \alpha'$. Since $\epsilon > 0$ is arbitrary, $\beta \leq \alpha$ and $\beta' \leq \alpha'$. Hence $[\alpha, \beta] = [\alpha', \beta']$. Therefore $f(A \circ B) = f(A) \circ f(B)$.

(c) Clearly, $A \cap B \subset A$ and $A \cap B \subset B$. By Result 2.B(d), $f(A \cap B) \subset f(B)$. So $f(A \cap B) \subset f(A) \cap f(B)$. Suppose B is IVF-invariant. Then clearly, $f^{-1}(f(B)) = B$. Let $y \in R'$ and let $\epsilon > 0$ is arbitrary. Let $[\alpha, \beta] = (f(A) \cap f(B))(y)$ and let $[\alpha', \beta'] = (f(A) \cap f(B))(y)$. Then $\alpha = (f(A) \cap f(B))^L(y) = (\bigvee_{x \in f^{-1}(y)} A^L(x)) \wedge f(B)^L(y)$

 $\beta = (f(A) \cap f(B))^U(y) = (\bigvee_{x \in f^{-1}(y)} A^U(x)) \wedge f(B)^U(y).$ Thus $\alpha - \epsilon < (\bigvee_{x \in f^{-1}(y)} A^L(x)) \land \widetilde{f(B)}^L(y) \text{ and } \beta - \epsilon < (\bigvee_{x \in f^{-1}(y)} A^U(x)) \land \widetilde{f(B)}^L(y)$ $f(B)^U(y)$. So there exists an $x \in f^{-1}(y)$ such that $\alpha - \epsilon < A^L(x), \alpha - \epsilon < f(B)^L(y)$ and $\beta - \epsilon < A^U(x), \alpha - \epsilon < f(B)^U(y).$ Since B is IVF-invariant, $f^{-1}(f(B)) = B$. Then $f(B)^{L}(y) = f(B)^{L}(f(x)) = f^{-1}(f(B)^{L})(x) = f^{-1}(f(B^{L}))(x) =$ $B^L(x)$ $\begin{array}{l} f(B)^U(y) \ = \ f(B)^U(f(x)) \ = \ f^{-1}(f(B)^U)(x) \ = \ f^{-1}(f(B^U))(x) \ = \ B^U(x). \end{array}$ Thus $\alpha - \epsilon < A^L(x), \alpha - \epsilon < B^L(x) \text{ and } \beta - \epsilon < A^U(x), \beta - \epsilon < B^U(x).$ So $\alpha - \epsilon < A^L(x) \land B^L(x) = (A \cap B)^L(x) \text{ and } \beta - \epsilon < A^U(x) \land B^U(x) = (A \cap B)^L(x)$ $(A \cap B)^L(x).$ Hence $\alpha-\epsilon < \bigvee_{x\in f^{-1}(y)} (A\cap B)^L(x) = (f(A\cap B)^L)(y) = \alpha'$ and $\alpha - \epsilon < \bigvee_{x \in f^{-1}(y)} (A \cap B)^U(x) = (f(A \cap B)^U)(y) = \beta'$. Since $\epsilon > 0$ is

$\alpha - \epsilon < \bigvee_{x \in f^{-1}(y)} (A \cap B) \quad (x) = (f(A \cap B) \cap)(y) = \beta$. Since $\epsilon > 0$ is arbitrary, $\alpha \le \alpha'$ and $\beta \le \beta'$. Thus $f(A) \cap f(B) \subset f(A \cap B)$. Therefore $f(A) \cap f(B) = f(A \cap B)$. \Box

5. Interval-valued fuzzy cosets

Definition 5.1. Let A be any IVI of a ring R and let $x \in R$. Then $A_x \in D(I)^R$ is called the *interval-valued fuzzy coset* determined by x and A if $A_x(r) = A(r-x)$ for each $r \in R$.

Proposition 5.2. Let R be any IVI of a ring R and let R/A the set of all interval-valued fuzzy cosets of A in R. Then R/A is a ring under the following operations:

 $A_x + A_y = A_{x+y}$ and $A_x A_y = A_{xy}$ for any $x, y \in R$.

Proof. For any *a*, *b*, *c*, *d* ∈ *R*, suppose $A_a = A_b$ and $A_c = A_d$. Then A(r - a) = A(r - b) for each $r \in R$ (5.1) and A(r - c) = A(r - d) for each $r \in R$. (5.2) Let r = a + c - d in (5.1), r = c in (5.2) and r = a in (5.1). Then A(a + c - d - a) = A(a + c - d - b) = A(c - d), A(c - c) = A(c - d) = A(0) (5.3) and A(a - a) = A(a - b) = A(0). (5.4) On the other hand, $(A_a + A_c)^L(r) = A_{a+c}^L(r) = A^L(r - a - c)$ $= A^L((r - b - d) - (a + c - b - d))$ $\ge A^L(r - b - d) \land A^L(a + c - b - d)$ $= A^L(r - b - d) \land A^L(0)$ (By (5.3))

$$= A^{L}(r - b - d) = A^{L}_{b+d}(r) = (A_{b} + A_{d})^{L}(r).$$

By the similar arguments, we have that $(A_a + A_c)^U(r) = (A_b + A_d)^U(r)$. Thus $A_a + A_d \subset A_a + A_c$. Similarly, we have $A_a + A_c \subset A_b + A_d$. So $A_a + A_c = A_b + A_d$. Hence addition is well-defined. Also,

$$(A_{a}A_{c})^{L}(r) = A_{ac}^{L}(r) = A^{L}(r-ac)$$

$$= A^{L}((r-bd) - (ac-bd))$$

$$\geq A^{L}(r-bd) \wedge A^{L}(ac-bd)$$

$$= A^{L}(r-bd) \wedge A^{L}((a-b)c - b(d-c)) \text{ (By (5.3) and (5.4))}$$

$$\geq A^{L}(r-bd) \wedge A^{L}(a-b)A^{L}(d-c))$$

$$= A^{L}(r-bd) \wedge A^{L}(0)A^{L}(0) \text{ (By (5.4) and (5.5))}$$

$$= A^{L}(r-bd) = A_{bd}^{L}(r) = A_{b}^{L}A_{d}^{L}(r).$$

By the similar arguments, we have that $(A_aA_c)^U(r) = (A_bA_d)^U(r)$. Thus $A_bA_d \subset A_aA_c$. Similarly, we have $A_aA_c \subset A_bA_d$. So $A_bA_d = A_aA_c$. Hence multiplication is well-defined. Clearly, $A_0(=A)$ acts as the additive identity, A_e as the multiplicative identity (where e is the multiplicative identity of R) and A_{-x} as additive inverse of A_x . It is now a purely routine matter to verify the other properties. This completes the proof. \Box

Lemma 5.3. Let A be any IVR or an IVI of a ring R. If there exist $x, y \in R$ such that $A^{L}(x) < A^{L}(y)$ and $A^{U}(x) < A^{U}(y)$, then A(x-y) = A(x) = A(y-x).

Proof. Since A is an IVG of R with respect to "+", by Result 4.A, A(x-y) = A(y-x). Thus it is sufficient to show that A(x-y) = A(x). Since $A^L(x) < A^L(y), A^U(x) < A^U(y)$ and A is an IVR or an IVI of R, $A^L(x-y) \ge A^L(x) \land A^L(y) = A^L(x)$ and $A^U(x-y) \ge A^U(x) \land A^U(y) = A^U(x)$. On the other hand, $A^L(x) = A^L(x-y+y) \ge A^L(x-y) \land A^L(y)$ and $A^U(x) = A^U(x-y+y) \ge A^U(x-y) \land A^U(y)$. Thus $A^L(x) \ge A^L(x-y)$ and $A^U(x) \ge A^U(x-y)$. So $A^L(x-y) = A(x)$. This completes the proof. \Box

Lemma 5.4. If A is any IVI of a ring R, then A(x) = A(0) if and only if $A_x = A_0$, where $x \in R$.

Proof. (\Rightarrow) : Suppose A(x) = A(0). Since A is an IVG of R with respect to "+", $A(r) \leq A(0) = A(r)$, i.e., $A^L(r) \leq A^L(0) = A^L(r)$ and $A^U(r) \leq A^U(0) = A^U(r)$ for each $r \in R$.

Case (i): Suppose A(r) < A(x). Then, by Lemma 5.3, A(r-x) = A(x). Thus $A_x(r) = A_0(r)$ for each $r \in R$.

Case (ii): Suppose A(r) = A(x). Then $x, r \in A^{[\lambda,\mu]}$, where $[\lambda,\mu] = A(0)$. Since A is an IVG of R, $A^{[\lambda,\mu]}$ is a subgroup of R. Thus $x - r \in A^{[\lambda,\mu]}$. Thus $A^L(x-r) \leq \lambda = A^L(0)$ and $A^U(x-r) \geq \mu = A^U(0)$. Since $A^L(x-r) \leq A^L(0)$ and $A^U(x-r) \leq A^U(0), A^L(x-r) = A^L(0)$ and $A^U(x-r) = A(0)$. Thus A(x-r) = A(0) = A(x) = A(r), i.e., $A_x(r) = A_0(r)$ for each $r \in R$. In either case, $A_x(r) = A_0(r)$ for each $r \in R$.

 (\Leftarrow) : It is straightforward. \Box

Proposition 5.5. Let A be any IVI of a ring R and let $A(0) = [\lambda, \mu]$. Then $R/A^{[\lambda,\mu]} \cong R/A$.

Proof. Define a mapping $f : R \to R/A$ by $f(x) = A_x$ for each $r \in R$. Then it is easy to check that f is a ring epimorphism. By Lemma 5.4,

$$\begin{aligned} Kerf &= \{x \in R : f(x) = A_0\} = \{x \in R : A_x = A_0\} \\ &= \{x \in R : A(x) = A_0\} = A^{[\lambda,\mu]}. \end{aligned}$$

Hence $R/A^{[\lambda,\mu]} \cong R/A$. \Box

Proposition 5.6. Let $f: R \to R'$ be a ring epimorphism and let A be an IVI of R such that $A^{[\lambda,\mu]} \subset Kerf$, where $[\lambda,\mu] = A(0)$. Then there exists a unique epimorphism $\overline{f}: R/A \to R'$ such that $f = \overline{f} \circ g$, where $g(x) = A_x$ for each $r \in R$.

Proof. Define a mapping $\overline{f} : R_A \to R'$ by $\overline{f}(A_x) = f(x)$ for each $r \in R$. Suppose $A_x = A_y$. Then $A_{x-y} = A_0 = A_x = A_y$. By Lemma 5.4, A(x-y) = A(x). Then $x-y \in A^{[\lambda,\mu]}$. Since $A^{[\lambda,\mu]} \subset Kerf$, $x-y \in Kerf$. Thus f(x) = f(y), i.e., $\overline{f}(A_x) = \overline{f}(A_y)$. So \overline{f} is well-defined. Furthermore, since f is surjective, \overline{f} is also surjective. Moreover, it is easy to see that \overline{f} is a homomorphism.

Consider the following diagram:

Let $x \in R$. Then $f(x) = \overline{f}(A_x) = \overline{f}(g(x)) = (\overline{f} \circ g)(x)$. Thus the above diagram commutes, i.e., $f = \overline{f} \circ g$.

Suppose there exists an epimorphism $h : R/A \to R'$ such that $f = h \circ g$. Let $x \in R$. Then $\overline{f}(A_x) = f(x) = (h \circ g)(x) = h(g(x)) = h(A_x)$. Thus $\overline{f} = h$. So \overline{f} is unique. This completes the proof. \Box

Corollary 5.6. The induced homomorphism \overline{f} is an isomorphism if and only if A is IVF-invariant.

Proof. (\Rightarrow) : Suppose \bar{f} is an isomorphism, i.e., \bar{f} is injective. For any $x, y \in R$, let f(x) = f(y). Then $\bar{f}(A_x) = \bar{f}(A_y)$. Since \bar{f} is injective, $A_x = A_y$. Thus $A_{x-y} = A_0$. By Lemma 5.4, A(x-y) = A(0). By Proposition 4.7 in [5], A(x) = A(y). So A is IVF-invariant.

 (\Leftarrow) : Suppose A is IVF-invariant and $\bar{f}(A_x) = \bar{f}(A_y)$. Then f(x) = f(0). Since A is IVF-invariant, A(x) = A(0). By Lemma 5.4, $A_x = A_0$. So \bar{f} is injective. This completes the proof. \Box

Proposition 5.7. Let $f : R \to R'$ be a ring epimorphism and let A be an IVF-invariant IVI of R. Then R/A = R'/f(A).

Proof. Since A is IVF-invariant, $Kerf \subset A^{[\lambda,\mu]}$, where $[\lambda,\mu] = A(0)$. Consider $f(A)(0') = [f(A^L)(0'), f(A^U)(0')]$, where 0' denotes the additive identity in R'. Then

$$f(A^{L})(0') = \bigvee_{x \in f^{-1}(0')} A^{L}(x) \text{ and } f(A^{U})(0') = \bigvee_{x \in f^{-1}(0')} A^{U}(x)$$

Since f(0) = 0' and $A(x) \le A(0)$, i.e., $A^{L}(x) \le A^{L}(0), A^{U}(x) \le A^{U}(0)$ for each $x \in R$, $A^{L}(x) = A^{L}(0)$ and $A^{U}(x) = A^{U}(0)$, i.e., $f(A)(0') = A(0) = [\lambda, \mu]$. Now,

$$\begin{split} f(x) \in [f(A)]^{[\lambda,\mu]} &\Leftrightarrow f(A)^L(f(X)) \geq \lambda \text{ and } f(A)^U(f(X)) \geq \mu \\ &\Leftrightarrow f(A^L)(f(x)) \geq \lambda \text{ and } f(A^U)(f(x)) \geq \mu \\ &\Leftrightarrow f^{-1}(f(A^L))(x) \geq \lambda \text{ and } f^{-1}(f(A^U))(x) \geq \mu \\ &\Leftrightarrow A^L(x) \geq \lambda \text{ and } A^U(x) \geq \mu \text{ (by Result 4.B)} \\ &\Leftrightarrow x \in A^{[\lambda,\mu]} \\ &\Leftrightarrow f(x) \in f(A^{[\lambda,\mu]}) \text{ (Since } Kerf \subset A^{[\lambda,\mu]}). \end{split}$$

So $[f(A)]^{\lambda,\mu]} = f(A^{[\lambda,\mu]})$. By Proposition 5.5, $R/A \cong R/A^{[\lambda,\mu]}$ and $R'/f(A) \cong R/[f(A)]^{[\lambda,\mu]}$. Hence $R/A \cong R'/f(A)$. This completes the proof. \Box

References

- R.Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, Fuzzy set and systems 63(1995) 87-90.
- [2] J.Y.Choi, S.R.Kim and K.Hur, Interval-valued smooth topological spaces, Honam Math.J.32[4](2010), 711-738.
- [3] M.B.Gorzalczany, A method of inference in approximate reasoning based on interval-values fuzzy, sets, Fuzzy sets and Systems 21(1987) 1-17.
- K. Hur, J.G.Lee and J.Y.Choi, Interval-valued fuzzy relations, J.Korean Institute of Intelligent systems 19(3)(2009)425-432
- [5] H.W.Kang and K.Hur, Interval-valued fuzzy subgroups and rings, Honam. Math. J. 32.(4)(2010), 593-617.
- [6] T.K.Mondal and S.K.Samanta, Topology of interval-valued fuzzy sets, Indian J.Pure Appl.Math.30(1)(1999) 20-38.
- [7] L.A.Zadeh, Fuzzy sets, Inform. and Control 8(1965),338-353. K. Hur, H.W.Kang and H.K.Song, Intuitionistic fuzzy subgroups and subrings, Honam Math.J.25(1)(2003),19-41.

[8] —, The concept of a linguistic variable and its application to approximate reasoning I, Inform.Sci 8(1975) 199-249.

Hee Won Kang Department of Mathematics Education, Woosuk University, Wanju-kun 570-749, Korea. E-mail: khwon@woosuk.ac.kr