
Honam Mathematical J. 33 (2011), No. 4, pp. 487–493
http://dx.doi.org/10.5831/HMJ.2011.33.4.487

α-SCALAR CURVATURE OF THE t-MANIFOLD

Bong Sik Cho∗ and Sun Young Jung

Abstract. The Fisher information matrix plays a significant role
in statistical inference in connection with estimation and properties
of variance of estimators. In this paper, we define the parameter
space of the t-manifold using its Fisher’s matrix and characterize
the t-manifold from the viewpoint of information geometry. The
α-scalar curvatures to the t-manifold are calculated.

1. Introduction

Information geometry is the differential geometric study of the man-
ifold of probability measures or probability density functions. Recently,
information geometric methods have been applied to many areas of
the study of estimating functions and nuisance parameter, the depen-
dency of Bayesian predictive distribution, the class of invariant priors
for Bayesian inference, principal component analysis, independent com-
ponent analysis and blind source separation.

Rao (1945) first noticed the importance of the differential-geometrical
approach and introduced the Riemannian metric in a statistical mani-
fold by using the Fisher information matrix and calculated the geodesic
distance between two distributions for various statistical models. Since
then many researchers have tried to obtain the properties of the Rie-
mannian manifold of a statistical model. Efron (1975) elucidated the
meaning of curvature for asymptotic statistical inference and pointed
that the statistical curvature plays a fundamental role in the higher order
asymptotic theory of statistical inference. Amari (1982) gave a natural
definition of a family of Affine connections on the statistical manifolds,
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so called the α-connection and α-curvature. Then he pointed out impor-
tant roles of the exponential and mixture curvatures and their duality in
statistical inference. Amari (1985) remarked that the two dimensional
parameter space of the family of one dimensional normal distribution is
a space of negative constant curvature and studied the α-geometry of
the families of the gamma, Gaussian, Mckey bivariate gamma and the
Freund bivariate exponential. Recently, Adbel-All et al. (2003), Kass
(1989), Kass and Vos (1997), Murray and Rice (1993) studied the prob-
ability density function from the viewpoint of information geometry and
use the geometric metrics to give a new description to the statistical
distribution. Arwini and Dodson (2007) studied the α-geometry of the
Weibull manifold. In this paper, we find the α-connection and α-scalar
curvature of the t-manifold.

2. The t-manifold

The set

S = {p(x) =
1

v

Γ( r+1
2 )

√
πrΓ( r2)

(1+
1

r
(
x− u
v

)2)−
r+1
2 |x ∈ R, (u, v) ∈ R×R+}

is called the t-manifold, where

(2.1) p(x) =
1

v

Γ( r+1
2 )

√
πrΓ( r2)

(1 +
1

r
(
x− u
v

)2)−
r+1
2

is the probability density function of the t-distribution location pa-
rameter.
Define

a =
1

r
, b =

r + 1

2
, cr =

Γ( r+1
2 )

√
πrΓ( r2)

From (2.1), the log likelihood function is

(2.2) ln p(x) = ln cr − b ln(1 + a(
x− u
v

)2)− ln v

Set l(x) = ln p(x). Taking the coordinate (θ1, θ2) = (u, v) and setting

∂il =
∂

∂θi
l(x), from (2.2) we get

∂1∂1l =
2ab(a(x− u)2 − v2)
(v2 + a(x− u)2)2

, ∂1∂2l =
4abv(x− u)

(v2 + a(x− u)2)2
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∂2∂2l =
1

v2
[1 +
−6ab(x− u)2v−2(1 + a(x− u)2v−2) + 4a2b(x− u)4v−4

(1 + a(x− u)2v−2)2
].

From Cho and Baek(2006), Fisher information matrix (gij) is given by

(2.3) (gij) =

(
r+1

v2(r+3)
0

0 2r
v2(r+3)

)
, (gij) =

(
v2(r+3)
r+1 0

0 v2(r+3)
2r

)
We get

ds2 =
1

v2(r + 3)
((r+1)du2+2rdv2), dA =

√
det(gij) =

√
2r(r + 1)

v2(r + 3)
dudv.

Moreover

(2.4) E(
1

Z2 + 1
) =

r

r + 1
, E(

1

(Z2 + 1)2
) =

r(r + 2)

(r + 1)(r + 3)
,

(2.5) E(
1

(Z2 + 1)3
) =

r(r + 2)(r + 4)

(r + 1)(r + 3)(r + 5)

Proposition 2.1. The α-curvature tensor of the t-manifold is given
by

(2.6)

R
(α)
1212 = −(r + 1){12(r + 2) + 2(1− α)(r − 1)2 − (1− α)2(r − 1)2}

v4(r + 3)(r + 5)2
.

Proof. Since the α-connection is defined by

(2.7)
Γ
(α)
ijk = E[(∂i∂jl +

1− α
2

∂il∂jl)∂kl]

= Γ
(1)
ijk +

1− α
2

Tijk,

where Tijk = E[∂il∂jl∂kl], from (2.4) and (2.5)
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(2.8)
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where a = 1/r and b =
r + 1

2
.

By (2.7)

(2.9)
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T111 = T122 = 0,

From (2.7), (2.8) and (2.9)
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(2.10)
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k(α)
ij = Γ

(α)
ijmg

km
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Since the α-curvature tensors R
(α)
ijkm are defined by

R
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by (2.3), (2.10) and (2.11)
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Since the α-scalar curvature K(α) is defined by
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Thus we have
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Theorem 2.2. The α-scalar curvature of the t-distribution is given
by

K(α) =
(r + 3){12(r + 2) + 2(1− α)(r − 1)2 − (1− α)2(r − 1)2}

2r(r + 5)2
.

Thus if α = 0, we have the following corollary.

Corollary 2.3. The scalar curvature R and the Gaussian curvature
K of the t-distribution, are

R = −r + 3

r
, K =

1

2
R.

3. Conclusions

The Fisher information matrix(FIM) measures the curvature of the
log-likelihood surface. Flat surfaces around the maximum do not inspire
high confidence in estimated parameter values, while steep surfaces lead
to sharp estimates. It is important to know the shape of a statistical
model in the whole set of probability distributions. The information
content is large if the FIM is large, because the likelihood is sharply
peaked. we are sure that the maximum likelihood(ML) solution is a
good estimate. If the curvature is small, then the likelihood probability
distribution is very broad. So the ML estimate is not as good because
the variance is very large.

A one-parameter family of Affine connections are called the α-connecti
ons. The duality between the α-connection and the α-connection to-
gether with the metric play an essential role in this geometry. This kind
of duality, having emerged from manifolds of probability distributions,
is ubiquitous, appearing in a variety of problems which might have no
explicit relation to probability theory. The notion of α-curvature serves
an important role in the asymptotic theory of statistical estimation, an-
cillary statistics, conditional inference and Bartlett adjustment in the
likelihood ratio test.
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