DOI QR코드

DOI QR Code

A Study on Development of Assessment Model for Spatio-Temporal Changes in River Bed Using Numerical Models

수치모형을 이용한 하상변동 시공간 평가 기법 개발 연구

  • Kim, Chul-Moon (Dept. of Civil Engrg., The University of Suwon) ;
  • Lee, Jeong-Ju (Water Resources Investigation & Planning Dept., K-water) ;
  • Choi, Su-Won (Dept. of Civil Engrg., The University of Suwon) ;
  • Ahn, Won-Sik (Dept. of Civil Engrg., The University of Suwon)
  • 김철문 (수원대학교 토목공학과) ;
  • 이정주 (한국수자원공사 조사기획처) ;
  • 최수원 (수원대학교 토목공학과) ;
  • 안원식 (수원대학교 토목공학과)
  • Received : 2011.10.13
  • Accepted : 2011.11.01
  • Published : 2011.12.31

Abstract

In this study, to develop an assessment method for spatio-temporal riverbed changes, a 1-dimensional model (HEC-RAS) and a 2-dimensional model (CCHE2D) were built and applied. As for the analysis of a riverbed's long-term change in a real stream, three new assessment methods were developed, which are called the "Sediment section cumulative curve", "Sediment section moment", and "Sediment probability distribution function." These methods were used to assess the characteristics of riverbed changes using a consistent valuation standard and to understand changes in quantities intuitively. From the results of this study, sediment characteristics of cross sections can be detected effectively by applying the "Sediment section cumulative curve" method to determine whether there is any sedimentation or erosion in total emission. The amount of sedimentation or erosion occurring in the right or left banks, which divided by center column, could be presented as one criterion by applying the "Sediment section moment" method. This approach could be utilized as an indicator for sediment predictions. Spatio-temporal sediment variables can be presented quantitatively by determining the mean and uncertain boundaries through the "Sediment probability distribution function", and finally, the results can be illustrated for each cross section to provide intuitive recognition.

본 연구에서는 하상의 시공간적변동에 대한 평가기법을 개발하고자, 1차원HEC-RAS 모델과 2차원CCHE2D 모델을 이용해 하상변동을 평가하였다. 실제하천의 장기간 하상변동의 결과를 해석함에 있어서 변동 특성을 일관적인 기준으로 평가하고, 변화량을 직관적으로 알 수있는 평가방법을개발하고자유사단면누가곡선, 유사단면모멘트, 유사확률분포함수의 세 가지 평가 방법을 개발하였다. 본 연구를 수행한 결과 유사단면 누가곡선법은 단면의 총량적 개념의 침식 또는 퇴적 여부를 판별하는데 효과적이며, 유사단면 모멘트법은 하천의 좌, 우안을 나누는 기준선을 중심으로 좌, 우안의 퇴적 또는 침식 정도를 하나의 척도로 제시하는 것이 가능하였다. 이러한 방법은 하천의 곡률 등과 연계한 하상변동 예측에 있어서 하나의 영향지표로 활용할 수 있을 것이다. 유사확률분포함수의 경우 하천 단면 구간에 대한 시간의 변화에 따른 변동 모의 결과를 직관적으로 도시하고, 해당 구간의 시공간적 변동 특성을 통계적 특성치인 평균과 신뢰 구간을 통해 정량화 할 수 있었다.

Keywords

References

  1. 김연수, 장창래, 이기하, 정관수(2010). "CCHE2D모형을 이용한 급만곡부의 흐름특성 분석." 한국방재학회논문 집, 한국방재학회, 제10권, 5호, pp. 125-133.
  2. 박기두, 이길성, 강원구(2008). "안양천의 장기하상변동 모의." 제34회 대한토목학회 정기 학술대회 논문집, 대한토목학회, pp. 1763-1766.
  3. 박영진, 조진규, 임장혁(2007). "중소규모 댐 상류의 SED- 2D 모형을 이용한 장기간 유사 거동 모의 연구." 환경관리학회지, 한국환경관리학회, 제13권, 제4호, pp. 241- 248.
  4. 서일원, 김대근, 이재형(1995). "GSTARS모형을 이용한 하상변동 해석." 대한토목학회논문집, 대한토목학회, 제15권, 제6호, pp. 1679-1687.
  5. 유권규, 우효섭(1993). "HEC-6를 이용한 대청댐 하류의 하상변동예측." 대한토목학회논문집, 대한토목학회, 제 13권, 제5호, pp. 157-163.
  6. 윤여승, 안경수(2007). "하도특성량과 수치모형에 의한 하상변동 예측." 한국습지학회지, 한국습지학회, 제9권, 제3호, pp. 51-61.
  7. 이종석, 차영기, 김이현(1999). "FLUVIAL-12 모형에 의한 침식성 사행수로의 하상변동 해석." 대한토목학회논문집, 대한토목학회, 제19권, 제II-3호, pp. 275-283.
  8. 장창래, 정관수, 김재한, 양동윤(2000). "댐건설에 의한 하 상변동 예측." 2000년도 대한토목학회 학술발표회 논문집, 대한토목학회, 제3권, pp. 175-178.
  9. 지운, 여운광, 한승원(2010). "낙동강하구둑 상류 접근수로에서의 유사량 공식 및 유사 이송형태에 따른 하상변동 수치모의에 관한 연구." 한국수자원학회논문집, 한국수자원학회, 제43권, 제6호, pp. 543-557. https://doi.org/10.3741/JKWRA.2010.43.6.543
  10. 최호균, 김원일, 이삼희, 안원식(2009). "하천 협소부에서 하상 이동성과 형태와의 상관성에 관한 하도수리학적 평가." 한국수자원학회논문집, 한국수자원학회, 제42 권, 제2호, pp. 141-148. https://doi.org/10.3741/JKWRA.2009.42.2.141
  11. Acker, P., and White, W.R. (1973). "Sediment transport new approach and analysis." Journal of Hydraulic Engineering Division, ASCE, Vol. 99, HY 11, pp. 2041-2060.
  12. Duan, J.G., and Nanda, S.K. (2006). "Two-dimensional Depth-averaged Model Simulation of Suspended Sediment Concentration Distribution in a Groyne Field." Journal of Hydrology, Elsevier, Vol. 327, pp. 426-437. https://doi.org/10.1016/j.jhydrol.2005.11.055
  13. Engelund, F., and Hansen, E. (1967). A monograph on sediment transport to alluvial streams. Copenhagen, Teknik Vorlag, Copehangen, Denmark.
  14. Garbrecht, J., Kuhnle, R.A., and Alonso, C.V. (1995). "A sediment transport capacity formulation for large channel networks." Journal of Soil and Water Conservation, Vol. 50, No. 5, pp. 527-529.
  15. Nassar, M.A. (2011). "Multi-parametric Sensitivity Analysis of CCHE2D for Channel Flow Simulations in Nile River." Journal of Hydro-environment Research, Elsevier, Vol. 5, pp. 187-195.
  16. Negm, M.A., Abdulaziz, T., Nassar, M., and Fathy, I. (2010). "Predication of Life Time Span of High Aswan Dam Reservior Using CCHE2D Simulation Model." Proceeding 14th International Water Technology Conference, pp. 611-626.
  17. Wu, W., Wang, S.S.Y., and Jia, Y. (2000). "Nonuniform Sediment transport in alluvial river." Journal of Hydraulic Engineering Research, IAHR, Vol. 38, No. 6, pp. 427-434. https://doi.org/10.1080/00221680009498296
  18. Yang, C.T. (1979). "Unit Steam Power Equation for Total Load." Journal of Hydrology, Vol. 40, pp. 123-138. https://doi.org/10.1016/0022-1694(79)90092-1
  19. Yang, C.T. (1984). "Unit Steam Power Equation for Gravel." Journal of the Hydraulics Division, ASCE, Vol. 110, No. 12, pp. 1783-1797. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1783)
  20. Zeng, W., and Beck, M.B. (2003). "STAND, a Dynamic Model for Sediment Transport and Water Quality." Journal of Hydrology, Elservier, Vol. 277, pp. 125-133. https://doi.org/10.1016/S0022-1694(03)00073-8

Cited by

  1. Long-term Riverbed Change Simulation and Analisys in the River vol.21, pp.5, 2013, https://doi.org/10.12672/ksis.2013.21.5.001