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ABSTRACT 
 

To achieve efficient field formulations and fast numerical computations, the reciprocal relations and equivalence between tangential 
and normal boundary conditions for electromagnetic fields are discussed in terms of the Maxwell's differential equations. Using the 
equivalence of each boundary condition, we propose the six essential boundary conditions, which may be applicable to matching 
electromagnetic discontinuities to efficiently design RF devices. In order to verify our approach, the reflection characteristics of a 
rectangular waveguide step are compared with respect to six essential boundary conditions. 
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 1. INTRODUCTION 
 

In a wireless communication system [1]-[3], the performance 
of RF devices is of utmost importance to achieve high SNR 
(Signal to Noise Ratio) and reliable communication link. For 
better performance, a RF device should have low reflection 
coefficient, low insertion loss, simple structure, easy 
fabrication, etc. Since many researchers have investigated the 
RF scattering mechanism, the RF design procedures are well 
established. 

 

 
Fig. 1. Standard design procedure of RF devices 

 
Fig. 1 illustrates the standard design procedure for RF 

devices which is composed of numerical computation, 
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optimization [4], fabrication, and measurement. Among these 
steps, the optimization [4] is very time-consuming and deeply 
related to numerical computation scheme. However, when we 
have fast numerical computation algorithm, we can efficiently 
accelerate the optimization step. Numerical computation 
algorithms for RF devices include mode-matching technique, 
MoM (Method of Moments), FDM (Finite Difference Method), 
FEM (Finite Element Method), etc. For canonical structures 
such as waveguide structures, microwave resonators, and 
standard scatterers, the mode-matching technique is well 
known for fast computation time and low memory consumption. 
To apply the mode-matching technique, the electromagnetic 
boundary conditions (BCs) should be invoked beforehand. The 
enforcement of electromagnetic BCs is also one of fundamental 
problems in the application of a classical electromagnetics [5]-
[12]. In [5]-[8], the concept of BCs has been extensively 
investigated and extended by means of four vector potentials, 
generalized impedance BCs related to higher order derivatives, 
differential forms, and the uniqueness theorem, respectively. 
The dependent relations of tangential and normal BCs are 
discussed and proved with the Stokes' theorem [9]. In [11], [12], 
the normal BCs for a planar surface are proposed based on the 
Maxwell’s equations. 

 In this work, we present a simple yet rigorous proof of the 
reciprocal relations and equivalence between tangential and 
normal BCs in terms of the Maxwell's differential equations, 
thus facilitating more rapid and efficient numerical 
computations. Utilizing this equivalency, we will present six 
essential BCs. Numerical computations will be also performed 
to check the validity of applying the essential BCs. In Sect. 4, 
we will prove that the BCs composed of normal fields produce 
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simpler matrix equations than those of tangential fields. 
 
 

2. RELATIONSHIP BETWEEN TANGENTIAL AND 
NORMAL BOUNDARY CONDITIONS 

 
Let’s consider the sourceless Maxwell’s equations as 
 

BiE ω=×∇            (1) 

DiH ω−=×∇            (2) 

0=⋅∇ D            (3) 

0=⋅∇ B            (4) 
 

where we use the tie ω−  time convention. In terms of 

tangential fields tt HE ,  and normal fields nn BD ,  with 

respect to an electromagnetic boundary layer in Fig. 2, the 
Maxwell’s equations from (1) to (4) can be simplified as 

 

ntt BiE ω=×∇    (5) 

ntt DiH ω−×∇ =    (6) 

ερ //= entt nEE +∂−∂⋅∇   (7) 

μρ //= mntt nHH +∂−∂⋅∇   (8) 

 

where me ρρ ,  are equivalent electric and magnetic charge 

densities, respectively, which are frequently introduced in 
waveguide discontinuity problems. The concept of equivalent 
charge densities will be explained in Sect. 3. 

 

 
Fig. 2. Geometry of an electromagnetic boundary layer 
 

For the tangential fields tt HE ,  in a sourceless medium, 

using (1) and (2), the ordinary matching BCs are given by [13] 
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Subtracting (5) and (6) for regions (I) and (II) gives the 

relations between tangential and normal fields as 
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where ntt ˆˆˆ
21 ⊥⊥ , ntt ˆ=ˆˆ

21 × , and 1,2t̂  and n̂  are 

the tangential and normal unit vectors to a boundary layer in 
Fig. 2, respectively. Inserting (9) into (10) and (11), we obtain 
the auxiliary BCs as [9] 
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Even though the normal BCs (12) can be alternatively 

derived with a conceptual infinitesimal cylinder [13], (9) and 
(12) show that tangential BCs result in normal BCs, thus 
confirming that tangential and normal BCs are not independent 
each other. 

Similarly, manipulating (7), (8), and (9), we also get the 
another auxiliary BCs as  
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In view of the Maxwell's divergence equations, (3) and (4), 

and the uniqueness theorem in electromagnetics [13], the 
normal BCs (12) should be equivalent to (13) and (14) when 
tangential BCs (9) are given. 

For the normal fields in a sourceless medium, we can select 
the matching BCs as 
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It should be noted that we can replace (16) for the t1-axis 

with that for the t2-axis as 
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Applying (15) and (16) to (10) and (11), we may obtain the 

additional BCs as 
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Based on (18) and (19), we define the tangential field 

relations for region (I) and (II) as 
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where ),( 2 ntCE  and ),( 2 ntCH  are arbitrary 
functions of only one-variable n. Inserting (20) and (21) into 
(1) and (2) yields 

 

[ ] 2222
ˆ),(ˆ),( tntCitntC HIIE ωμ=×∇         (22) 

[ ] 2222
ˆ),(ˆ),( tntCitntC EIIH ωε−=×∇     (23) 

 
In order to simultaneously satisfy (22) and (23), we should 

have 0),(),( 22 == ntCntC HE . This means that (15) 
and (16) yield (17) and in the same manner (15) and (17) result 
in (16). 

 
 

3. ESSENTIAL BOUNDARY CONDITIONS AND THEIR 
EQUIVALENCY 

 
Utilizing the reciprocal relationship between tangential and 

normal BCs in Sect. 2, we can define the essential BCs which 
are equivalent each other. Since the tangential BCs (9) produce 
the normal BCs (12), (13), and (14) and vice versa, we obtain 
the six equivalent BCs, any one of which makes us have unique 
solutions. 

 
Table 1. Six essential boundary conditions 

Condition Subcondition (a) Subcondition (b) 
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Table 1 shows the six essential BCs for electromagnetic 
fields, where each essential BC is composed of Subconditions 
(a) and (b) in Table 1. To understand Table 1, let’s compare 
and get equivalency of the tangential and normal BCs. 
Continuity of tangential electric fields (9) is equivalent to that 
of normal magnetic flux densities (12) and normal derivative of 
normal electric fields (13). Similarly, continuity of tangential 
magnetic fields (9) does the same to that of normal electric flux 
densities (12) and normal derivative of normal magnetic fields 
(14). In addition, these continuities are vice versa. This 
indicates that the tangential and normal BCs in (9), (12), (13), 
and (14) have equivalent relations which are overtly organized 
in Table 1. 

 

 
Fig. 3. Geometry of a PEC abrupt step 

 
In the derivation of tangential and normal BCs, we assume 

there may be equivalent charge densities, eρ  and mρ , in 

geometrical discontinuity. To figure out this assumption, let’s 
regard a PEC (Perfect Electric Conductor) abrupt step in Fig. 3. 
For the Conditions (III) through (VI), we define the equivalent 

electric and magnetic surface charge densities esρ  and msρ  

at the waveguide step in Fig. 3. As such, we can get 
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where In̂  and IIn̂  are the outward normal vectors to the 
waveguides in regions (I) and (II), respectively. The definition 
in (24) and (25) can be understood in terms of electromagnetic 

BCs. As shown in Fig. 3, the tangential electric field tE  is 

normal to the PEC surface. This means that there should be 

surface electric charge density esρ  on the PEC surface [13]. 

When we set up the simultaneous equations for Fig. 3, the 

integration interval for the electric field is from 2b−  to 2b . 

Thus, esρ  is nonzero for region (I) and zero for region (II). 

This is because the edge points of region (I) at 12 bt ±=  are 

within the integration interval ),( 22 bb− . The formula (25) 
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can also be figured out in terms of magnetic BC in which the 
normal magnetic field toward a PEC surface should be zero. 

The integration interval for the tangential magnetic field tH  

is defined from 1b−  to 1b . The magnetic BC is satisfied for 
region (I), whereas that does not for region (II) due to 

truncation of the integral interval ),( 11 bb− . As a result, we 

have to introduce msρ  for region (II) 

 
 

4. NUMERICAL ANALYSIS 
 
In order to verify the equivalency of matching BCs in Table 

1, we consider a rectangular waveguide step shown in Fig. 4. 
 

 
Fig. 4. Geometry of a rectangular waveguide step 

 

Assume that an incident TE
snsm  mode impinges upon a 

step. A standard mode-matching technique will be applied and 
the number of modes for regions (I) and (II) will be chosen to 
facilitate the mode selection criterion in [14]. The incident and 

reflected zH  fields in region (I) ( 0≤z ) are 
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region (I), scattered electromagnetic fields are represented as 
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where 0≠+ nm . In region (II) ( 0>z ), transmitted 
fields are  
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Multiplying the xE  continuity at 0=z  by 
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l ++  and integrating over 

22 << axa−  and 22 << byb−  results in 
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By enforcing the yE  continuity at 0=z  and 

multiplying it by )(cos)(sin 22 bybaxa II
k

II
l ++ , we obtain  
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Similarly, from the xH  and yH  continuities at 0=z , 

we get, respectively, 
 

nk
mln

I
mn

I
mn

I
m

I
mn

I
mn

I
n

nm

baBqaZpb δα11
,

)[( −∑  

)]()()( bGaFBqaZpb knlm
II
mn

II
mn

II
m

II
mn

II
mn

II
n +−  

ksn
lsmsn

I

snsm
I

sm
I

snsm baBaZ δα112= −      (37) 



54 Yong-Heui Cho : Efficient electromagnetic boundary conditions to accelerate optimization of RF devices 
 

International Journal of Contents, Vol.7, No.4, Dec 2011 

nk
mlm

I
mn

I
mn

I
n

I
mn

I
mn

I
m

nm

baBqbZpa δα11
,

)[( +∑  

)]()()( bFaGBqbZpa knlm
II
mn

II
mn

II
n

II
mn

II
mn

II
m −−  

. 2= 11
ksn
lsmsm

I

snsm
I

sn
I

snsm baBbZ δα      (38) 

 

In terms of normal fields, we enforce the zEε  and zHμ  

continuities at 0=z  to obtain the scattering relations as, 
respectively, 
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Similarly, applying the ερ // ez zE −∂∂  and 

μρ // mz zH −∂∂  continuities at 0=z  yields, respectively, 
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Manipulating (32), (36) through (42), we can compose of the 

six essential BCs shown in Table 1. When xt ˆ1̂ = , yt ˆ2̂ = , 

zn ˆˆ = , the essential BCs for the geometry in Fig. 4 are 
formulated in Table 2. 

 
Table 2. Essential boundary conditions for a waveguide step 
Condition Subcondition (a) Subcondition (b) 

(I) (32) and (36) (37) and (38) 

(II) (39) and (40) (32) or (36) 
(37) or (38) 

(III) (41) and (42) (32) or (36) 
(37) or (38) 

(IV) (39) and (42) (32) and (36) 
(V) (41) and (40) (37) and (38) 
(VI) (41) and (40) (39) and (42) 

For instance, let’s compare the simultaneous equations for 
Conditions (I) and (VI). The equation set for Condition (I) 
shown in Table 2 is obtained with the standard tangential field 
matching and that for Condition (VI) does with the normal field 
matching proposed in this work. Condition (I) results in much 
more complex equations than Condition (VI), thus verifying 
that Condition (VI) is numerically very efficient for most 
practical applications. 

 

 
Fig. 5. Convergence characteristics of normalized reflected 

power with f = 5 [GHz], 01 εε = , 01 μμ = , 01 2εε = , 

01 2μμ = , 11 2ba =  = 20.19 [mm], 22 2ba =  = 54.61 

[mm] 
 
Fig. 5 shows the convergence characteristics of normalized 

reflected power versus the total number of modes with respect 
to the TE10 mode incidence. Numerical computations illustrate 
that the convergence characteristics of the BCs (I) through (VI) 
agree well with each other. 

 
 

5. CONCLUSION 
 
By studying the equivalency of tangential and normal 

electromagnetic boundary conditions, we propose the six 
essential boundary conditions. We showed that the six essential 
boundary conditions composed of tangential and normal fields 
are identical and interchangeable each other. For normal 
boundary conditions, a novel concept of equivalent charge 
density is important to obtain proper electromagnetic solutions. 
Numerical computations for a waveguide step show that our 
essential boundary conditions are almost identical each other. 
The boundary conditions composed of normal fields are more 
efficient than those for tangential fields in terms of 
computational complexity. In further work, we will investigate 
the generalization of boundary conditions for general media 
including metamaterial, plasma, and anisotropic material. 
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