DOI QR코드

DOI QR Code

Phase Evolution and Thermo-physical Properties of La2(Zr1-xHfx)2O7 Oxides for Thermal Barrier Coatings

열차폐코팅용 La2(Zr1-xHfx)2O7 산화물의 상형성과 열물성

  • Kim, Seong-Won (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jang, Byung-Koog (High Temperature Materials Unit, National Institute of Materials Science)
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 장병국 (물질.재료연구기구 (NIMS) 선진고온재료유닛트)
  • Received : 2011.09.29
  • Accepted : 2011.11.22
  • Published : 2011.12.28

Abstract

As operating temperatures of engines or turbines continually increase for higher efficiency, significant amounts of researches have been focused on finding new materials, which would be alternatives to conventional yttria-stabilized zirconia (YSZ) for thermal barrier coatings (TBCs). In this study, phase evolution and thermo-physical properties of $La_2(Zr_{1-x}Hf_x)_2O_7$ pyrochlore systems are investigated for TBC applications. $La_2(Zr_{1-x}Hf_x)_2O_7$ systems are comprised by selecting $La^{3+}$ as A-site ions and $Zr^{4+}/Hf^{4+}$ as B-site ions in $A_2B_2O_7$ pyrochlore structures. For the developed phases in $La_2(Zr_{1-x}Hf_x)_2O_7$ compositions, thermo-physical properties such as thermal conductivity, thermal expansion coefficient are examined. The potential of these $La_2(Zr_{1-x}Hf_x)_2O_7$ compositions for TBC application is also discussed.

Keywords

References

  1. D. R. Clarke and C. G. Levi: Annu. Rev. Mater. Res., 33 (2003) 383. https://doi.org/10.1146/annurev.matsci.33.011403.113718
  2. G. Carlos and C. G. Levi: Curr. Opin. Solid State Mater. Sci., 8 (2004) 77. https://doi.org/10.1016/j.cossms.2004.03.009
  3. X. Q. Cao, R. Vassen and D. Stoever: J. Euro. Ceram. Soc., 24 (2004) 1. https://doi.org/10.1016/S0955-2219(03)00129-8
  4. D. R. Clarke: Surf. Coat. Technol., 163-164 (2003) 67. https://doi.org/10.1016/S0257-8972(02)00593-5
  5. J. Wu, X. Z. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo and M. I. Osendi: J. Am. Ceram. Soc., 85 (2002) 3031. https://doi.org/10.1111/j.1151-2916.2002.tb00574.x
  6. P. K. Schelling, S. R. Phillpot and R. W. Grimes: Philos. Mag. Lett., 84 (2004) 127. https://doi.org/10.1080/09500830310001646699
  7. B.-C. Shim, K.-H. Kwak, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang and S. Kim: J. Korean Powder Metall. Inst., 17 (2010) 148 (Korean). https://doi.org/10.4150/KPMI.2010.17.2.148
  8. Q. Xu, W. Pan, J. D. Wang, C. L. Wan, L. H. Qi, H. Z. Miao, K. Mori and T. Torigoe: J. Am. Ceram. Soc., 89 (2006) 340. https://doi.org/10.1111/j.1551-2916.2005.00667.x
  9. M. A. Subramanian, G. Aravamudan and G. V. Subba Rao: Prog. Solid St. Chem., 15 (1983) 55. https://doi.org/10.1016/0079-6786(83)90001-8
  10. L. Minervini and R. W. Grimes: J. Am. Ceram. Soc., 83 (2000) 1873. https://doi.org/10.1111/j.1151-2916.2000.tb01484.x
  11. A. Chartier, C. Meis, J. P. Crocombette, L. R. Corrales and W. J. Weber: Phys. Rev. B, 67 (2003) 174102. https://doi.org/10.1103/PhysRevB.67.174102
  12. D. R. Clarke and S. R. Phillpot: Mater. Today, 8 (2005) 25.
  13. M. R. Winter and D. R. Clarke: J. Am. Ceram. Soc., 90 (2007) 533. https://doi.org/10.1111/j.1551-2916.2006.01410.x
  14. J. B. Nelson and D. P. Riley: Proc. Phys. Soc., 57 (1945) 160. https://doi.org/10.1088/0959-5309/57/3/302
  15. Y. Du, M. Yashima, T. Koura, M. Kakihana and M. Yoshimura: J. Eur. Ceram. Soc., 15 (1995) 503. https://doi.org/10.1016/0955-2219(95)00040-2
  16. A. V. Shevchenko, L. M. Lopato and Z. A. Zaitseva: Inorg. Mater. (Engl. Transl.), 20 (1984) 1316.
  17. C. R. Stanek and R. W. Grimes: J. Am. Ceram. Soc., 85 (2002) 2139. https://doi.org/10.1111/j.1151-2916.2002.tb00423.x
  18. Y.-M. Chiang, D. Birnie III and W. D. Kingery: Physical Ceramics, John Wiley & Sons, Inc. (1997) 13.
  19. B. P. Mandal, N. Garg, S. M. Sharma and A. K. Tyagi: J. Solid St. Chem., 179 (2006) 1990. https://doi.org/10.1016/j.jssc.2006.03.036
  20. D. S. Smith, S. Fayette, S. Grandjean and C. Martin: J. Am. Ceram. Soc., 86 (2003) 105. https://doi.org/10.1111/j.1151-2916.2003.tb03285.x
  21. P. G. Klemens: High Temp. High Press., 23 (1991) 241.
  22. C. Kittel: Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, Inc. (2005) 125.