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Abstract 
Due to the expansion of high-speed Internet access, the need for secure and reliable networks has become more critical. The sophisti-

cation of network attacks, as well as their severity, has also increased recently. As such, more and more organizations are becoming

vulnerable to attack. The aim of this research is to classify network attacks using neural networks (NN), which leads to a higher detec-

tion rate and a lower false alarm rate in a shorter time. This paper focuses on two classification types: a single class (normal, or attack),

and a multi class (normal, DoS, PRB, R2L, U2R), where the category of attack is also detected by the NN. Extensive analysis is con-

ducted in order to assess the translation of symbolic data, partitioning of the training data and the complexity of the architecture. This

paper investigates two engines; the first engine is the back-propagation neural network intrusion detection system (BPNNIDS) and the

second engine is the radial basis function neural network intrusion detection system (BPNNIDS).The two engines proposed in this

paper are tested against traditional and other machine learning algorithms using a common dataset: the DARPA 98 KDD99 benchmark

dataset from International Knowledge Discovery and Data Mining Tools. BPNNIDS shows a superior response compared to the other

techniques reported in literature especially in terms of response time, detection rate and false positive rate.

Categroy: Ubiquitous computing

Keywords: Intrusion detection systems; Machine learning; Denial of service; Neural networks; The Defense Advanced

Research Projects Agency (DARPA)

I. INTRODUCTION

Intrusions can be defined as actions that attempt to bypass

the security mechanisms of computer systems [1-3]. Intrusions

may take many forms: attackers accessing a system through the

Internet or insider attackers; authorized (official) users attempt-

ing to gain and misuse non-authorized privileges. So, we say

that intrusions are any set of actions that threaten the integrity,

availability, or confidentiality of a network resource. Intrusion

detection is the process of monitoring the events occurring in a

computer system or network and analyzing them for signs of

intrusions. Intrusion detection systems (IDS) raise the alarm

when possible intrusions occur.

A lot of research into artificial neural networks (ANNs) has

been undertaken. In [4], artificial neural networks and support

vector machine (SVM) algorithms were applied to intrusion

detection (ID), using a frequency-based encoding method, on

the DARPA dataset. The authors use 250 attacks and 41,426

normal sessions and the detection rate (DR) varied from 100%

to 43.6% with the false positive rate (FPR) ranging from 8.53%

to 0.27% under different settings. In [5], the author concludes

that the combination of a radial basis function (RBF) and self-

organizing map (SOM) is useful as an intrusion detection model.

He concludes that the “evaluation of human integration” is nec-

essary to reduce classification errors. His experimental results

showed that RBF−SOM achieves similar or even better results,

Received 25 November 2010, Revised 19 Septempber 2011, Accepted 11 November 2011

*Corresponding Author

Open Access http://dx.doi.org/10.5626/JCSE.2011.5.4.305 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Computing Science and Engineering, Vol. 5, No. 4, December 2011, pp. 305-313

http://dx.doi.org/10.5626/JCSE.2011.5.4.305 306 Ahmed H. Fares et al.

compared to just an RBF. In [6], the authors use hierarchical

(SOM) and conclude that the best performance is achieved

using a two-layer SOM hierarchy, based on all 41-features in

the KDD dataset and the ‘Protocol’ feature provides the basis

for a switching parameter. The detector achieved an FPR and DR

of 1.38% and 90.4% respectively. In [7], the authors use a hier-

archical ID model using principal component analysis (PCA)

neural network that gave a 97.1% DR and a 2.8% FPR. In [8], a

critical study about the use of some neural networks (NNs) is

used to detect and classify intrusions, the DR was 93.83% for

the PCA approach, and the FPR was 6.16% for PCA. In [9], the

authors present a biologically inspired computational approach

to dynamically and adaptively learn signatures for network

intrusion detection using a supervised learning classifier sys-

tem. The classifier is an online and incremental parallel produc-

tion rule-based system.

It should be noted that most of the previous systems concen-

trate on either detecting two categories (normal or attack) or

detecting a certain category of attack. Also all of the previous

work ignores the symbolic features of the KDD Cup 1999 data

set, this adversely affects the accuracy of detection. This study

suggested a back-propagation neural network intrusion detec-

tion system (BPNNIDS) and a radial basis function neural net-

work intrusion detection system (RBFNNIDS). Both can perform

either two category or multi-category detection and at the same

time they do not ignore the symbolic features of the data.

This paper is organized as follows: Section II introduces the

intrusion detection taxonomy, Section III explains the method-

ology and the proposed system architecture, Section IV presents

the experimental results and finally Section V concludes the

paper.

II. INTRUSION DETECTION TAXONOMY

In short, intrusions are generally classified into several cate-

gories [8]: 

● Attack types that are classified as:

○ Denial of service (DoS)

○ Probe (PRB)

○ Remote to login (R2L)

○ User to root (U2R)

● Single network connections involved in attacks versus

multiple network connections

● Source of computer attacks: 

○ Single attack versus multiple attacks

● Network, host and wireless networks

● Manual attacks and automated attacks

In short, IDS are generally classified according to several

categories as follows [5, 7, 10]:

● Work environments that can be classified as having host-

based IDs or network-based IDs

● Analysis that can be classified as anomaly detection or

misuse detection.

● Analysis that can be classified as real-time analysis or off-

line analysis.

● Architecture that can be classified as single and centralized

or distributed and heterogeneous.

● Activeness that can be classified as active reaction or pas-

sive reaction.

● Periodicity that can be classified as continuous analysis or

periodic analysis.

The system proposed in this paper is considered to be net-

work based, misuse with the ability to merge new attacks in one

of the main four categories (DoS, PRB, U2R, and the R2L),

offline and passive.

III. THE PROPOSED SYSTEM ARCHITECTURE

A. Overview 

The proposed system architecture (Fig. 1) is primarily based

on three stages: data pre-processing stage, building the neural

network intrusion detection system (two engines) stage and

metrics used to analyze the results stage. The three main stages

of the proposed system architecture and their respective sub

groupings are discussed in more detail in the following sections.

According to a survey about the DARPA 98, KDD Cup 99

datasets, it should be noted that this dataset has been the target

of the latest research [11, 12].

B. Data Pre-processing Stage

The data pre-processing stage consists of the following:

1) Adding Columns Headers: Since the KDD Cup 1999

dataset was retrieved unlabeled, one of the first important steps

is to add columns headers to it. 41 columns headers are added

that contain information such as duration, protocol_type, ser-

vice, src_bytes, dst_bytes, flag, land, wrong_fragment, ext. 

Fig. 1. Proposed system architecture. DoS: denial of service, PRB: Probe,
U2R: user to root, R2L: remote to login, IDS: intrusion detection system,
NNIDS: neural network intrusion detection system.
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2) Sampling: This step is one of the most important steps in

our system; the 10% KDD Cup 1999 dataset consists of 494,021

connections records as explained in Table 1. It can be easily cal-

culated from the dataset that the percentage of normal, DoS,

PRB, R2L, and U2R connections are 19.691066%, 79.239142%,

0.831341%, 0.227926%, and 0.010526% respectively. 

As we can see in Fig. 2, the DoS represents the majority of

the dataset followed by the other normal connections, where the

rest of the categories represent less than 1% of the training

dataset. Thus the neural network model will be over trained in

the two major types, taking very long time in learning repeated

data, at the same time it will consider minor types as noise due

to their negligible percentages in the training dataset. To over-

come this problem, the 10% version of the KDD Cup 1999

dataset is sampled in a way that the percentages of the various

categories are of comparable value. The proposed system is

trained using both the original and the sample dataset.

It should be noted from Table 1 that, we have only three

records of high value: normal, smurf and neptune. This should

be taking into consideration in the sampling process, i.e., only

these values should be decreased.

An iterative reduction algorithm is proposed and applied to

the (10% version of the KDD Cup 1999 dataset) as follows:

1. Search for the top-3 major values and consider them set S1.

2. The rest of the values are considered as set S2.

3. The maximum value of connection V1 in S2 is selected.

4. The values in S1 are reduced to be comparable to V1 and

at the same time their order is maintained.

5. The performance of the system is tested with the new values.

6. Steps 4 and 5 are repeated until optimum results are obtained.

The original KDD Cup 1999 dataset can be divided easily

into two categories. The first category (S1) consists of 3 attacks

with a massive amount of available samples. The second cate-

gory (S2) consists of the rest of the attacks; each of them is rep-

resented with less than 1% of the dataset’s samples. This could

make the system treat them as noise and not recognize them as

separate classes. So, the reduction algorithm takes a portion of

the dataset where all categories are represented by a percentage

that cannot be neglected by the classification system while

keeping their relative abundance.

Reducing the top 3 records should take into consideration the

other category records (S2). The 3 records shouldn't be reduced

to values less than the maximum of the other category records

(S2). So the record with maximum number of samples must be

identified (V1) such that V1  S2 where V1 = Max (S2).

The 3 chosen records (S1) will then be reduced iteratively

keeping their values larger than V1 such that S1 (i) ≥ V1 where
1 ≤ I ≤ 3. Also the algorithm tries to maintain the order and pro-
portion of the reduced records compared to the original dataset

size especially the “normal” record to keep the false positive

alarm rate as low as possible. After each iteration, the perfor-

mance of the proposed system is measured using the new values

generated by the algorithm.

Optimum results are obtained when reducing the normal con-

nections from 97,278 records to 4,000 records, the smurf records

from 280,790 records to 4,406 and the Neptune records from

107,201 to 2203 as shown in Table 2.

Figs. 2 and 3 show the distributions of the normal and attack

connections in the dataset before and after applying the pro-

posed iterative reduction algorithm. Comparing these figures, it

can be shown that the percentage of normal connections is

approximately the same, this is important for reducing the FPR.

The percentage of DoS records is reduced from 79% to 52%

due to the reduction in smurf and neptune but it is still high

compared to other categories. The percentages of both probe

and R2L records have changed to significant values can now be

seen in the dataset. This guarantees that the network will recog-

nize these two types along with the other ones. Regarding the

U2R category, this one is considered as host attack. This

C

Table 1. 10% version of the KDD Cup 1999 dataset distributions

Category Attack name/normal
No. of 

records

Percentage 

(%)

Normal normal connection 97,278 19.691066

DoS (n = 391,458, 

79.239142%)

smurf 280,790 56.84

back 2,203 0.45

land 21 0.00

neptune 107,201 21.70

pod 264 0.05

teardrop 979 0.20

Probe (n = 4,107, 

0.831341%)

ipsweep 1,247 0.25

nmap 231 0.05

satan 1,589 0.32

portsweep 1,040 0.21

R2L (n = 1,126, 

0.227926%)

ftp_write 8 0.00

guess_passwd 53 0.01

imap 12 0.00

multihop 7 0.00

spy 2 0.00

phf 4 0.00

warezclient 1,020 0.21

warezmaster 20 0.00

U2R (n = 52, 

0.010526%)

buffer_overflow 30 0.01

loadmodule 9 0.00

perl 3 0.00

rootkit 10 0.00

DoS: denial of service, R2L: remote to login, U2R: user to root.

Fig. 2. 10% version of the KDD Cup 1999 dataset distributions. DoS: denial
of service, R2L: remote to login, U2R: user to root.
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research focuses only on network attacks, where U2R is consid-

ered as a noise in this research. The main advantage of this is

reducing the training data from 494,021 records to 19,361 that

greatly reduce straining time.

Finally, we will work using two datasets, a 10% version of

the KDD Cup 1999 dataset and the proposed reduced dataset.

We will compare the performance for both.

3) Encapsulating the 22 Attacks: The next step is to encap-

sulate the attack names to their categories, here two types of

encapsulation are proposed. The first one is to encapsulate the

22 attack names to their four original categories DoS, PRB,

R2L and U2L. The second one is to encapsulate the 22 attack

names to the word attack.

We will work with two systems; the first one uses the first

type of encapsulation and has five categories: DoS, PRB, R2L,

U2L and normal. The second system uses the second type of

encapsulation and has two categories: attack and normal.

4) Encoding the Symbolic Features: The DARPA 98 KDD99

benchmark dataset has three symbolic features: PROTOCOL_TYPE,

service and flag. These features are very important and shouldn’t

be ignored.

As an example, the Encoding of the PROTOCOL_TYPE fea-

ture is shown in Table 3. The rest of the symbolic features are

translated in the same way.

C. Building Neural Network IDS Stage

Two systems are built; the first is a system that consists of

five categories: DoS, PRB, R2L, U2L and normal. The second

one is a system that consists of two categories: attack and nor-

mal. Two engines are used: back-propagation [13] and the radial

basis function [14, 15]. The structure of the two systems will be

explained in subsequent paragraphs. For the testing step, the

KDD set was used (Table 4). The KDD corrected testing set

contains 311,029 records, including records that describe 15

new attack types [16-19].

1) The Back Propagation Algorithm searches for weight

values that minimize the total error of the network over a set of

training examples (the training set). It consists of the repeated

application of two passes: a forward pass and a backward pass.

In the forward pass, the network is activated for one example

and the error of each neuron of the output layer is computed. In

the backward pass, the network error is used for updating the

weights (a credit or blame assignment problem). This process is

more complex, because hidden nodes are not directly linked to

the error but are linked through the nodes of the next layer.

Therefore, starting at the output layer, the error is propagated

Table 2. Our selected KDD Cup 1999 dataset distribution

Category Attack name/normal
No. of 

records

Percentage

(%)

Normal Normal connection 4,000 20.66

DoS (n = 10,076, 

52.04%)

smurf 4,406 22.76

back 2,203 11.38

land 21 0.11

neptune 2,203 11.38

pod 264 1.36

teardrop 979 5.06

PRB (n = 4,107, 

21.21%

ipsweep 1,247 6.44

nmap 231 1.19

satan 1,589 8.21

portsweep 1,040 5.37

R2L (n = 1,126,

5.82%)

ftp_write 8 0.04

guess_passwd 53 0.27

imap 12 0.06

multihop 7 0.04

spy 2 0.01

phf 4 0.02

warezclient 1,020 5.27

warezmaster 20 0.10

U2R (n = 52, 

0.27%)

buffer_overflow 30 0.15

loadmodule 9 0.05

perl 3 0.02

rootkit 10 0.05

DoS: denial of service, PRB: Probe, R2L: remote to login, U2R: user to

root.

Fig. 3. Our selected KDD Cup 1999 dataset distribution. DoS: denial of
service, R2L: remote to login, U2R: user to root.

Table 3. Translation of the PROTOCOL_TYPE symbolic feature

TCP UDP ICMP

TCP translation 1 0 0

UDP translation 0 1 1

ICMP translation 0 0 1

TCP: Transmission Control Protocol, UDP: User Datagram Protocol,

ICMP: Internet Control Message Protocol.

Table 4. The KDD Corrected testing set

Normal DoS PRB U2R R2L

% 19.58 73.9 1.3 0.02 5.2

No. 60,593 229,853 4,166 228 16,189

DoS: denial of service, PRB: Probe, U2R: user to root, R2L: remote to

login.
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backwards through the network, layer by layer. This is achieved

by recursively computing the local gradient of each neuron.

The algorithm can be summarized by the following steps [14, 15]:

1. Initialize the weights of the network (often randomly).

2. Present a training sample to the neural network where, in

our case, each pattern x consists of 115 features after the

translation of the symbolic features.

3. Compare the network's output to the desired output from

that sample. Calculate the error for each output neuron.

4. For each neuron, calculate what the output should have

been, and a scaling factor i.e. how much lower or higher

the output must be adjusted to match the desired output.

This is the local error.

5. Adjust the weights of each neuron to lower the local error.

wji = wji + ∆wji

With ∆wji computed using the (generalized) Delta rule.

∆wji(n) = α∆wji(n − 1) + ηδ j(n)yi(n)

α is the momentum constant 0 ≤ α <1

δj is the local gradient of neuron j 

For sigmoid activation functions 

where 

with wji the weight of the link from node i

to node j and yi the output of node i

6. Repeat the process from step 3 on the neurons at the previ-

ous level, using each one’s “blame” as its error.

Feed forward neural networks have complex error surfaces

(e.g. plateaus, long valleys etc.) with no single minimum. Add-

ing the momentum term is a simple approach to deal with this

problem.

There are two types of network training: incremental mode

and batch mode. In incremental mode (on-line or per-pattern

training), the weights are updated after presenting each pattern.

In batch mode (off-line or per-epoch training), the weights are

updated after presenting all the patterns. In the proposed system

we used the incremental mode.

2) Radial Basis Function (RBF) Networks are nonlinear

hybrid networks typically containing a single hidden layer of

processing elements (PEs). This layer uses Gaussian transfer

functions, rather than the standard sigmoidal functions employed

by MLPs. The centers and widths of the Gaussians are set by

unsupervised learning rules, while supervised learning is applied

to only the output layer. The Gaussian function responds only to

a small region of the input space where the Gaussian is centered

[14, 15].

For standard RBF’s, the supervised segment of the network

only needs to produce a linear combination of the output at the

unsupervised layer. Therefore having zero hidden layers is the

default setting. Hidden Layers can be added to make the super-

vised segment a MLP instead of a simple linear perceptron.

It is impossible to suggest an appropriate number of Gauss-

ians, because the number is problem dependent. We know that

the number of patterns in the training set affects the number of

centers (more patterns implies more Gaussians), but this is

mediated by the dispersion of the clusters. If the data is very

well clustered, then few Gaussians are needed. On the other

hand, if the data is scattered, many more Gaussians are required

for good performance.

3) Radial Basis Function (RBF) Algorithm:

● Centersare chosen randomly from the training set.

● Spreads are chosen by normalization.

● Weights: are computed by means of the pseudo-inverse

method.

D. Metrics Used to Analyze the Results

We will use three performance metrics to analyze our results.

● DR is the ratio between the number of correctly detected

attacks and the total number of attacks.

● FPR is the ratio between the number of normal connections

that are incorrectly misclassified as attacks and the total

number of normal connections.

● A confusion matrix (CM) is a visualization tool typically

used in supervised learning.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results detailing the

performance of the BPNNIDS and the RBFNNIDS. Both sys-

tems are trained on a10% version of the KDD Cup 1999 dataset,

and the sample we selected from the 10% version of the KDD

Cup 1999 dataset. A Pentium 4 (2.33 GHz) laptop, with 2 GB of

memory was used to implement the systems.

A. Five Category System using 10% Version of
KDD Cup 1999 (FCS 10 KDD)

A four layer neural network (Fig. 4) was used. It has three

hidden layers. The size of the input, hidden and output layer are

114, 50, 25, 13, and 5 respectively. 114 is the number of features

used in the training and 5 is the number of categories.

We first tried a network architecture of two hidden layers, but

this did not converge to a solution. Then we increased the hid-

den layers to three. The number of neurons in each hidden layer

was chosen by trial and error. We started with a size of the first

hidden layer at 41 neurons. This is the original number of fea-

tures in the dataset. Then, this size was increased until optimum

results were obtained. Similarly, the size of 2nd hidden and 3rd

hidden layers were chosen. For the parameters, the mean square

error (MSE) in the training step is 0.001, transfer sigmoid,

learning rule momentum, step size 1.0 and momentum 0.7.

δj

ϕ ' vj( ) dj yj–( )

ϕ ' vj( ) δkwkj

k of next layer

∑⎩
⎨
⎧

=
IF j output node

IF j hidden node

ϕ ' vj( ) ayj 1 yj–( )=

vj wji yi

i

∑=

σ
Maximum distance between any 2 centers

number of centers
----------------------------------------------------------------------------------------------------

dmax

m1

----------= =

w1 ... wm1[ ]T Φ+

d1 ... dN[ ]T=
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The suggested network architecture was trained using a 10%

version of the KDD Cup1999 dataset (Table 1) in 40 minutes and

18 seconds, and then tested using the KDD Corrected testing set

(Table 4).The resulting confusion matrix is shown in Table 5.

The training of the neural networks is stopped at 20 epochs,

with a minimum MSE of 8.63806E-05

The values at the diagonal of the matrix in Table 5 represent

the correct detected records. So, the detection rate can be calcu-

lated from Tables 4 and 5 by using the following equation:

= 97.92%

Similarly, the values in the last row of the confusion matrix

(Table 5) show the records detected to be normal. The first four

values are obviously misclassified as an attack. The false posi-

tive rate is calculated as follow:

FPR = 0.01 + 0.02 + 2.05 + 0.05 = 2.13%.

B. Five Category System using the Proposed
Reduced Dataset (FCS P KDD)

The suggested network architecture is trained using the sam-

ple we selected from a 10% version of the KDD Cup 1999

dataset (Table 2) in 3 minutes and 27 seconds, and tested using

the KDD Corrected testing set (Table 4).The resulting confusion

matrix is shown in Table 6.

The training of the neural network is stopped at 22 epochs,

with minimum MSE of 0.000531693

Similarly, the DR and FPR can be calculated from Table 4

and Table 6 to be:

DR = 98.97%.

FPR = 0.4%.

Comparing Performance under the two sets (FCS)

By comparing the two results, we can conclude that the the

dataset we selected has an excellent training time of only 3 min-

utes and 27 seconds (Table 7) with a better detection and false

positive rate.

C. Two Category System using 10% Version of
Kdd Cup 1999 (Tcs 10 Kdd)

A four layer neural network was used. It has three hidden

layers. The sizes of the input, hidden and output layers are 114,

50, 25, 15, and 2 respectively. 114 is the number of features

used in the training and 2 is the number of categories. We chose

the number of hidden layers and the number of neurons in each

layer in a way similar to that used in the five category system.

For the parameters, the mean square error (MSE) in the train-

ing step is 0.001, transfer function is the sigmoid, learning rule

is the momentum, the step size is 1.0 and momentum is 0.7.

The suggested network architecture is trained using a 10%

version of the KDD Cup 1999 dataset (Table 1) in 48 minutes,

and tested using the KDD Corrected testing set (Table 4).The

resulting confusion matrix is shown in Table 8.

The training of the neural network was stopped at 21 epochs,

with minimum MSE of 0.000204713.

DR
correct detected attack

total number of attack
------------------------------------------------------=

0.97*4166 0.7*16189 229853 0+ ++

4166 16189 229853 228+ + +
---------------------------------------------------------------------------------------%=

Fig. 4. Five categories system neural networks architecture.

Table 5. Confusion matrix for BPNNIDS trained by a 10% version of the
dataset (five category system)

PRB R2L DoS U2R Normal

PRB 97.17 0.00 2.02 0.02 0.80

R2L 4.02 70.02 15.04 0.00 10.92

DoS 0.00 0.00 100.00 0.00 0.00

U2R 0.00 38.46 0.00 0.00 61.54

Normal 0.01 0.02 2.05 0.05 97.91

BPNNIDS: back-propagation neural network intrusion detection

system, PRB: Probe, R2L: remote to login, DoS: denial of service,

U2R: user to root.

Table 6. Confusion matrix for BPNNIDS trained by our selected KDD Cup
1999 dataset (five category system) 

PRB R2L DoS U2R Normal

PRB 99.85 0.00 0.15 0.00 0.00

R2L 0.40 92.10 6.50 0.00 0.00

DoS 0.00 0.22 99.54 0.00 0.24

U2R 7.69 53.85 26.92 0.00 11.54

Normal 0.00 0.00 0.40 0.00 99.60

BPNNIDS: back-propagation neural network intrusion detection

system, PRB: Probe, R2L: remote to login, DoS: denial of service,

U2R: user to root.

Table 7. Performance under the two datasets (five category system)

DR (%) FPR (%) Training time

10% KDD 97.92 2.13 40 min 18 sec

The paper dataset 98.97. 0.4 3 min 27 sec

DR: detection rate, FPR: false positive rate.
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Similarly, the DR and FPR can be calculated from Tables 4

and 8 to be:

DR = 99.96%.

FPR = 2.124%.

D. Two Category System using the Proposed
Reduced Dataset (TCS P KDD)

The suggested network architecture is trained using the sam-

ple we selected from the 10% version of the KDD Cup 1999

dataset (Table 1) in 3 minutes 4 seconds, and tested using the

KDD Corrected testing set (Table 4).The resulting confusion

matrix is shown in Table 9.

The training of the neural networks is stopped at 22 epochs,

with minimum MSE of 0.000556344.

Similarly, the DR and FPR can be calculated from Tables 4

and 9 to be:

DR = 99.91%

FPR = 1.5997%.

Comparing Performance under the two sets (TCS)

By comparing the two results, we can conclude that the

dataset we selected has an excellent training time of only 3 min-

utes and 4 seconds (Table 10) with a better detection and false

positive rate.

E. Five Category System using the Proposed
Reduced Dataset and RBF (FCS P KDD)

A four layer neural network is used. It has one RBF layer,

two hidden layers and one output layer. The size of the input ,

RBF, hidden and output layers are 114, 114, 25, 13, and 5

respectively.

We first tried a network architecture with the number of cen-

ters less than the number of features. However, this did not con-

verge to a solution. Then, we increased the number of centres to

be equal to the number of features. The number of neurons in

each hidden layer was chosen by trial and error. We started with

the size of the first hidden layer to be 20 neurons. Then, this size

was increased until optimum results were obtained. Similarly,

the sizes of the two hidden layers were chosen. 

For the unsupervised learning parameters, the number of cen-

ters is 144, the maximum epochs are 100, termination– weight

change is 0.001 and learning rate is varied from 0.01 to 0.001.

For the other parameters, the MSE in the training step is

0.001, transfer function is the sigmoid, learning rule is the

momentum, the step size is 1.0 and momentum is 0.7.

The suggested network architecture was trained using the

paper sample we selected from the 10% version of the KDD

Cup 1999 dataset (Table 2) in 36 minutes 14 seconds, and tested

using the KDD Corrected testing set (Table 4), the resulting

confusion matrix is shown in Table 11.

By comparing Tables 7 and 11, we can conclude that the pro-

posed BPNNIDS has an excellent training time of only 3 min-

utes and 4 seconds (Table 10) with a better detection and false

positive rate.

We compare the performance of the paper proposed BPN-

NIDS with some of the other neural-network-based approaches,

such as K-means NN, SVM, SOM, and PCA. For this purpose,

we use the published results in (6, 8, 10, 20). We compare the

%DR and %FPR. Table 12 shows the experimental results.

Some incomplete items in the published results are represented

by ‘_’. The proposed back-propagation neural network intrusion

Table 8. Confusion matrix for BPNNIDS trained by 10% version of
dataset (two category system)

Attack Normal

Attack 99.96 0.0398

Normal 2.124 97.876

BPNNIDS: back-propagation neural network intrusion detection

system.

Table 9. Confusion matrix for BPNNIDS trained by the our selected KDD
Cup 1999 dataset (two category system)

Attack Normal

Attack 99.91 0.0929

Normal 1.5997 98.4003

BPNNIDS: back-propagation neural network intrusion detection

system.

Table 10. Performance under the two sets (two category system)

DR (%) FPR (%) Training time

10% KDD 99.96 2.124 48 min

The paper dataset 99.91 1.5997 3 min and 4 sec

Table 11. Confusion matrix for RBF trained by the ourselected KDD Cup
1999 dataset (five category system) without stopping

PRB R2L DoS U2R Normal

PRB 71.01 0.00 28.99 0.00 0.00

R2L 0.42 36.58 63.00 0.00 0.00

DoS 0.05 0.00 96.95 0.00 3.00

U2R 0.00 0.00 100 0.00 0.00

Normal 0.04 0.00 14.90 0.00 85.06

RBF: radial basis function, PRB: Probe, R2L: remote to login, DoS:

denial of service, U2R: user to root.

Table 12. Comparison with the previous work

Technique DR (%) FPR (%) Time

K-means neural network [20] 92 6.21 28 min 21 sec

Support vector machine [10] 98 10 -

Principal component analysis [8] 93.83 6.16 26 min 56 sec

Self-organizing map [6] 90.14 1.4 -

BPNNIDS-FCS-10% 97.92 2.13 40 min 18 sec

BPNNIDS-FCS-P 98.97 0.4 3 min 27 sec

BPNNIDS: back-propagation neural network intrusion detection

system, FCS: five category system
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detection system (BPNNIDS) achieves a higher DR and lower

FPR than all the other listed systems in less time.

V. CONCLUSIONS 

In this paper, a supervised learning approach to the intrusion

detection problem is investigated and demonstrated on the

International Knowledge Discovery and Data Mining Tools

Competition intrusion detection benchmark (the KDDCUP 99

dataset). To do so this we investigated two architectures; the first

engine is a back-propagation neural network intrusion detection

system (BPNNIDS) and the second is a RBFNNIDS. The two

engines work under two basic data sets; one is limited to 19361

connections (records), which is the set we selected from the

10% version of the KDD Cup 1999 dataset whereas the other

contains 494021 connections (records), which is the 10% ver-

sion of the KDD Cup 1999 dataset.

The significance of this paper’s iterative reduction algorithm

is to reduce the training time from 40 minutes 18 seconds to 3

minutes 27 seconds in the five category system. It also reduces

the training time from 48 minutes to 3 minutes and 4 seconds in

the two category system. 

Our systems include two types of encapsulation. The first

one encapsulates the 22 attack types to their four original cate-

gories DoS, PRB, R2L, and U2L. The second one encapsulates

the 22 attack types to the word attack. Two systems are intro-

duced; the first one uses the proposed five category encapsula-

tion: DoS, PRB, R2L, U2L, and normal. The second system

uses the proposed two category encapsulation: attack and normal.

The proposed iterative reduction algorithm, encoding the

symbolic features and the complexity architecture of the pro-

posed neural networks had a great effect on ensuring a high DR

with a low FPR. The DR was 98.97% and FPR was 0.4% in the

five category system that used the back-propagation neural net-

works engine with the reduced dataset. The DR was 97.92%

and FPR was 2.13% in the five category system that used the

back-propagation neural networks engine with the 10% version

of the KDD Cup 1999 dataset. The DR was 99.91% and FPR

was 1.5997% in the two category system that used the back-

propagation neural networks engine with the reduced dataset.

The DR was 99.96% and FPR was 2.124% in the two category

system that used the back-propagation neural networks engine

with the 10% version of the KDD Cup 1999 dataset.

This paper introduced two types of machine learning in a

supervised environment. The first one depends on back-propa-

gation neural networks and the second one depends on the

radial basis function. By comparing the training time, the detec-

tion rate and the false positive rate it can be concluded that the

engine with the back-propagation neural networks produced

better results than the one using the radial basis function.
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