DOI QR코드

DOI QR Code

Fabrication of a-Si:H/c-Si Hetero-Junction Solar Cells by Dual Hot Wire Chemical Vapor Deposition

양면동시증착 열선-CVD를 이용한 a-Si:H/c-Si 이종접합 태양전지 제조

  • Jeong, Dae-Young (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research) ;
  • Song, Jun-Yong (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research) ;
  • Kim, Kyung-Min (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research) ;
  • Lee, Hi-Deok (Department of Electronic, Chungnam National University) ;
  • Song, Jin-Soo (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research) ;
  • Lee, Jeong-Chul (KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research)
  • 정대영 (한국에너지기술연구원 차세대전지원천기술센터) ;
  • 송준용 (한국에너지기술연구원 차세대전지원천기술센터) ;
  • 김경민 (한국에너지기술연구원 차세대전지원천기술센터) ;
  • 이희덕 (충남대학교 전자전파정보통신과) ;
  • 송진수 (한국에너지기술연구원 차세대전지원천기술센터) ;
  • 이정철 (한국에너지기술연구원 차세대전지원천기술센터)
  • Received : 2011.10.30
  • Accepted : 2011.11.10
  • Published : 2011.12.27

Abstract

The a-Si:H/c-Si hetero-junction (HJ) solar cells have a variety of advantages in efficiency and fabrication processes. It has already demonstrated about 23% in R&D scale and more than 20% in commercial production. In order to further reduce the fabrication cost of HJ solar cells, fabrication processes should be simplified more than conventional methods which accompany separate processes of front and rear sides of the cells. In this study, we propose a simultaneous deposition of intrinsic thin a-Si:H layers on both sides of a wafer by dual hot wire CVD (HWVCD). In this system, wafers are located between tantalum wires, and a-Si:H layers are simultaneously deposited on both sides of the wafer. By using this scheme, we can reduce the process steps and time and improve the efficiency of HJ solar cells by removing surface contamination of the wafers. We achieved about 16% efficiency in HJ solar cells incorporating intrinsic a-Si:H buffers by dual HWCVD and p/n layers by PECVD.

Keywords

References

  1. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, Jpn. J. Appl. Phys., 31, 3518 (1992). https://doi.org/10.1143/JJAP.31.3518
  2. M. Tanaka, S. Okamoto, S. Tsuge and S. Kiyawa, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 1, 955 (2003).
  3. Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto and Y. Hamakawa, J. Appl. Phys., 67, 6538 (1990). https://doi.org/10.1063/1.345131
  4. Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama and M. Tanaka, Sol. Energ. Mater. Sol. Cell., 93, 670 (2009). https://doi.org/10.1016/j.solmat.2008.02.037
  5. S. Dauwe, J. Schmidt, and R. Hezel, in Proceedings of the 29th IEEE Photovoltaic Specialists Conference (New Orleans, Louisiana, May, 2002), p.1246. DOI : 10.1109/PVSC.2002.1190834.
  6. H. Angermann, W. Henrion, A. Roseler and M. Rebien, Mater. Sci. Eng. B, 73, 178 (2000). https://doi.org/10.1016/S0921-5107(99)00457-2
  7. H. Angermann, J. Rappich, L. Korte, I. Sieber, E. Conrad, M. Schmidt, K. Hübener, J. Polte and J. Hauschild, Appl. Surf. Sci., 254, 3615 (2008). https://doi.org/10.1016/j.apsusc.2007.10.099
  8. H. Angermann, J. Rappich, I. Sieber, K. Hubener and J. Hauschild, Anal. Bio Chem., 390, 1463 (2008). https://doi.org/10.1007/s00216-007-1738-5
  9. H. Angermann, L. Korte, J. Rappich, E. Conrad, I. Sieber, M. Schmidt, K. Hübener and J. Hauschild, Thin Solid Films, 516, 6775 (2008). https://doi.org/10.1016/j.tsf.2007.12.033
  10. M. W. M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van der Werf, R. E. I. Schropp and W. F. van der Weg, J. Appl. Phys., 82, 6089 (1997). https://doi.org/10.1063/1.366479
  11. M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, Progr. Photovolt. Res. Appl., 8(5), 503 (2000). https://doi.org/10.1002/1099-159X(200009/10)8:5<503::AID-PIP347>3.0.CO;2-G
  12. N. Jensen, R. M. Hausner, R. B. Bergmann, J. H. Werner and U. Rau, Progr. Photovolt. Res. Appl., 10(1), 1 (2002). https://doi.org/10.1002/pip.398
  13. I. Beckers, N. H. Nickel, W. Pilz and W. Fuhs, J. Non-Cryst. Solid., 227-230, 847 (1998). https://doi.org/10.1016/S0022-3093(98)00341-X
  14. T. Kaneko, M. Wakagi, K. Onisawa and T. Minemura, Appl. Phys. Lett., 64(14), 1865 (1994). https://doi.org/10.1063/1.111781
  15. J. Meier, P. Torres, R. Platz, S. Dubail, U. Kroll, J. A. Anna Selvan, N. Pellaton Vaucher, Ch. Hof, D. Fischer, H. Keppner, A. Shah, K. -D. Ufert, P. Giannoulès and J Koehler, Mater. Res. Soc. Symp. Proc., 420, 3 (1996). https://doi.org/10.1557/PROC-420-3
  16. F. Finger, P. Hapke, M. Luysberg, R. Carius, H. Wagner and M. Scheib, Appl. Phys. Lett., 65(20), 2588 (1994). https://doi.org/10.1063/1.112604
  17. H. L. Hwang, K. C. Wang, K. C. Hsu, T. -R Yew and J. J. Loferski, Progr. Photovolt. Res. Appl., 4, 165 (1996). https://doi.org/10.1002/(SICI)1099-159X(199605/06)4:3<165::AID-PIP119>3.0.CO;2-M
  18. E. C. Molenbroek, A. H. Mahan and A. Gallagher, J. Appl. Phys., 82(4), 1909 (1997). https://doi.org/10.1063/1.365998
  19. H. Matsumura, Jpn. J. Appl. Phys., 37(6A), 3175 (1998). https://doi.org/10.1143/JJAP.37.3175
  20. J. Cifre, J. Bertomeu, J. Puigdollers, M. C. Polo, J. Andreu and A. Lloret, Appl. Phys. Mater. Sci. Process., 59, 645 (1994). https://doi.org/10.1007/BF00331926
  21. H. Wiesmann, A. K. Ghosh, T. McMahon and M. Strongin, J. Appl. Phys., 50, 3752 (1979). https://doi.org/10.1063/1.326284
  22. R. A. Sinton and A. Cuevas, Appl. Phys. Lett., 69(17), 2510 (1996). https://doi.org/10.1063/1.117723
  23. Y. S. Kim, C.I. Drowly and C. Hu., in Proceedings of the 14th IEEE Photovoltaic Specialist Conference (San Diego, CA, January 1980) p. 560.
  24. I. Martin, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas and R. Alcubilla, Appl. Phys. Lett., 79, 2199 (2001). https://doi.org/10.1063/1.1404406