Abstract
Since the research of Black and Scholes (1973), modeling methods using diffusion processes have performed principal roles in financial engineering. In modern financial theories, various types of diffusion processes were suggested and applied in real situations. An estimation of the model parameters is an indispensible step to analyze financial data using diffusion process models. Many estimation methods were suggested and their properties were investigated. This paper reviews the statistical properties of the, Euler approximation method, New Local Linearization(NLL) method, and Generalized Methods of Moment(GMM) that are known as the most practical methods. From the simulation study, we found the NLL and Euler methods performed better than GMM. GMM is frequently used to estimate the parameters because of its simplicity; however this paper shows the performance of GMM is poorer than the Euler approximation method or the NLL method that are even simpler than GMM. This paper shows the performance of the GMM is extremely poor especially when the parameters in diffusion coefficient are to be estimated.
현대금융공학에 있어서 확산모형은 중요한 역할을 담당하고 있다. 다양한 형태의 확산모형이 제안되어왔고 현실에 응용되어 왔다. 확산모형을 이용하여 금융자료를 분석하기 위하여는 확산모형의 모수를 추정하는 것이 필수불가결한 단계이다. 이들 모수에 대한 다양한 추정방법들이 제안되어 왔고, 많은 연구에서 이러한 추정방법들이 갖는 성질에 대하여 연구되어져왔다. 이 연구에서는 그 적용방법이 단순하여 가장 자주 사용되는 것으로 알려진, 오일러 근사법과 신국소근사법(NLL) 그리고 일반화 적률법(GMM)과 같은 세 가지 추정방법들에 대한 통계적 성질을 검토하게 될 것이다. 모의실험연구를 통하여 오일러근사법이나 NLL방법이 GMM 방법에 비하여 훨씬 좋은 성질을 가지고 있음을 보이게 된다. 특히 GMM은 적용방법이 단순할 뿐만 아니라 강건성(robustness)이라는 좋은 성질을 가지고 있는 것으로 알려져 있어서 많은 연구에서 매우 자주 사용되는 추정방법이다. 그러나 본 연구에서 확인해 본 바와 같이 GMM은 그 사용법이 오히려 더욱 단순한 NLL이나 오일러방법에 비하여 열등한 통계적 성질을 보여주고 있었다. 특히나 확산계수에 추정모수가 포함된 경우에 GMM은 매우 좋지 못한 성질을 보이게 된다.