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Abstract
By using Malliavin calculus, we study a central limit theorem of the cross variation related to fractional

Brownian sheet with Hurst parameter H = (H1,H2) such that 1/4 < H1 < 1/2 and 1/4 < H2 < 1/2.
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1. Introduction

Let M be a two-parameter continuous martingale bounded in L2 and zero on the axes. Then M2 has
the following Doob-Mayer decomposition.

M2
st = 2

∫ s

0

∫ t

0
MzdMz + 2M̃st+ < Ms · >t + < M · t >s − < M >st,

where < M > is the quadratic variation of two-parameter martingale and M̃ is a martingale obtained
by the L1 limit of the sequence ∑

(si,t j)∈Πz

[
Msi+1,t j − Msi,t j

] [
Msi,t j+1 − Msi,t j

]
.

Here Πz is a partition of the rectangle [0, z] ⊆ [0, 1]2 with 0 = s0 < s1 < · · · < sp < 1 and
0 = t0 < t1 < · · · < tq < 1. For two martingales M̃ and M, the cross variation < M̃,M > is needed for
the stochastic calculus of M.

In this paper, we study the asymptotic behavior of the cross variations corresponding to the frac-
tional Brownian sheet (fBs) BH = (BH

z ), z ∈ [0, 1]2, with Hurst parameters H = (H1,H2), Hi ∈ (0, 1),
i = 1, 2. We state our main result in the following theorem.

Theorem 1. Let BH = (BH
z , z ∈ [0, 1]2) be fBs with Hurst parameter H = (H1,H2). If 1/4 < H1 <

1/2 and 1/4 < H2 < 1/2, then we have

Qn = n2(H1+H2)−1
n∑

k,l=1

[ (
BH

k+1
n , l

n
− BH

k
n ,

l
n

) (
BH

k
n ,

l+1
n
− BH

k
n ,

l
n

)
×

(
BH

k+1
n , l+1

n
− BH

k+1
n , l

n
− BH

k
n ,

l+1
n
+ BH

k
n ,

l
n

)
+

1
2n2(H1+H2)+1

(∫ 1

0
BH

s1,1ds1 +

∫ 1

0
BH

1,s2
ds2

) ]
L−→ N

(
0, σ2(H)

)
. (1.1)
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Here the notation
L−→ denote the convergence in distribution, and σ2(H) > 0 denote a constant

depending only on the Hurst parameters H = (H1,H2), where σ2(H) is given by

σ2(H) =
1
43

2∏
r=1

1
2(4Hr + 1)

∞∑
p=−∞

∣∣∣|p + 1|2Hr + |p − 1|2Hr − 2|p|2Hr
∣∣∣2 .

The main tool is the result on the convergence of multiple stochastic integrals worked by Nualart and
Ortiz-Latorre in Nualart and Ortiz-Latorre (2008) based on Malliavin calculus.

Recently in several works, the asymptotic behavior on the weighted power variations of a frac-
tional Brownian motion has been studied by using Malliavin calculus (See Nourdin, 2008; Nourdin
and Nualart, 2008; Nourdin et al., 2010). For the two-parameter processes, a central limit theorem has
been obtained in Réveillac (2009a) for the weighted quadratic variations of a standard Brownian sheet.
In addition, Réveillac in Réveillac (2009b) proved a central limit theorem for the finite-dimensional
laws of the weighted quadratic variations of fBs. In Park et al. (2011), author consider central limit
theorem and Berry-Essen bounds for the cross variation of this type with respect to standard Brownian
sheet. To the best of our knowledge, our studies on the cross variation of this type with respect to fBs
are a first attempt. Hence we consider the non-weighted cross variation of fBs in the simplest possible
variation.

2. Preliminaries

Now we recall some basic facts about Malliavin calculus for Gaussian processes. For a more detailed
reference, see Nualart (2006). Suppose that H is a real separable Hilbert space with scalar product
denoted by < · , · >H. Let B = (B(h), h ∈ H) be an isonormal Gaussian process, that is a centered
Gaussian family of random variables such that E(B(h)B(g)) =< h, g >H. In particular, if B is fBs BH

with Hurst parameter H = (H1,H2), then the scalar product is given by

⟨
1[0,a], 1[0,b]

⟩
H =

1
4

2∏
i=1

(
a2Hi

i + b2Hi
i − |ai − bi|2Hi

)
, for a, b ∈ [0, 1]2. (2.1)

Kim et al. in Kim et al. (2008) have developed the theory of stochastic calculus for fBs BH . For every
n ≥ 1, letHn be the nth Wiener chaos of BH , that is the closed linear subspace of L2(Ω) generated by
{Hn(BH(h)) : h ∈ H, ∥h∥H = 1}, where Hn is the nth Hermite polynomial. We define a linear isometric
mapping In : H⊙n → Hn by In(h⊗n) = n!Hn(BH(h)), where H⊙n is the symmetric tensor product.

In this paper we will only use multiple stochastic integrals with respect to a fBs BH = (BH
z , z ∈

[0, 1]2), and in this case the scalar product in H is defined by (2.1). We will use this notation H
throughout this paper.

If f ∈ H⊙p, the Malliavin derivative of the multiple stochastic integrals is given by

DzIn( fn) = nIn−1 ( fn( · , z)) , for z ∈ [0, 1]2.

Let {el, l ≥ 1} be a complete orthonormal system in H. If f ∈ H⊙p and g ∈ H⊙q, the contraction f ⊗r g,
1 ≤ r ≤ p ∧ q, is the element of H⊗(p+q−2r) defined by

f ⊗r g =
∞∑

l1,...,lr=1

⟨
f , el1 ⊗ · · · ⊗ elr

⟩
H⊗r

⟨
g, el1 ⊗ · · · ⊗ elr

⟩
H⊗r . (2.2)
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Notice that the tensor product f ⊗ g and the contraction f ⊗r g, 1 ≤ r ≤ p ∧ q, are not necessarily
symmetric even though f and g are symmetric. We will denote their symmetrizations by f ⊗̃g and
f ⊗̃rg, respectively. The following formula for the product of the multiple stochastic integrals will be
frequently used to prove the main result in this paper.

Proposition 1. Let f ∈ H⊙p and g ∈ H⊙q be two symmetric functions. Then

Ip( f )Iq(g) =
p∧q∑
r=0

r!
(
p
r

)(
q
r

)
Ip+q−2r( f ⊗r g). (2.3)

From Proposition 1, we have

E
[
Ip( f )Iq(g)

]
=

 0, if p , q,
p!

⟨
f̃ , g̃

⟩
H⊗p

, if p = q, (2.4)

where f̃ denotes the symmetrization of f .

3. Variations and Computations of Expectation

Let us set an(H) = n2(H1+H2)−1 and

Gn = an(H)
n−1∑
k,l=0

[ (
BH

k+1
n , l

n
− BH

k
n ,

l
n

) (
BH

k
n ,

l+1
n
− BH

k
n ,

l
n

)
×

(
BH

k+1
n , l+1

n
− BH

k+1
n , l

n
− BH

k
n ,

l+1
n
+ BH

k
n ,

l
n

)
+

1
2n2an(H)

(
BH

k
n ,1
+ BH

1, l
n

) ]
.

For simplicity, we write

ϵ(1)
k
n ,

l
n
= 1[ k

n ,
k+1

n ]×[0, l
n ], ϵ(2)

k
n ,

l
n
= 1[0, k

n ]×[ l
n

l+1
n ] and ϵ(3)

k
n ,

l
n
= 1[ k

n ,
k+1

n ]×[ l
n ,

l+1
n ].

The multiplication formula in Proposition 1 yields the decomposition Gn = G1,n + G2,n, where the
sequences G1,n and G2,n are given by

G1,n = an(H)
n−1∑
k,l=0

I3

(
ϵ(1)

k
n ,

l
n
⊗̃ϵ(2)

k
n ,

l
n
⊗̃ϵ(3)

k
n ,

l
n

)

G2,n = an(H)
n−1∑
k,l=0

[
1

2n2(H1+H2)

(
(l + 1)2H2 − l2H2

)
I1

(
ϵ(2)

k
n ,

l
n

)
+

1
2n2(H1+H2)

(
(k + 1)2H1 − k2H1

)
I1

(
ϵ(1)

k
n ,

l
n

)
+

⟨
ϵ(1)

k
n ,

l
n
, ϵ(2)

k
n ,

l
n

⟩
H

I1

(
ϵ(3)

k
n ,

l
n

)]
.

By the isometric formula (2.4) of the symmetric functions for multiple stochastic integral, the L2-norm
of G1,n is given by E[G2

1,n] = J1(n; H) + R1(n; H), where

J1(n; H) = a2
n(H)

n−1∑
i, j,k,l=0

⟨
ϵ(1)

i
n ,

j
n

ϵ(1)
k
n ,

l
n

⟩
H

⟨
ϵ(2)

i
n ,

j
n

, ϵ(2)
k
n ,

l
n

⟩
H

⟨
ϵ(3)

i
n ,

j
n

, ϵ(3)
k
n ,

l
n

⟩
H
,



854 Yoon Tae Kim

and the remaining term R1(n; H) consists of the four sums having the summands of the following
forms: for a = b, c , d, e , f or a , b, c , d, e , f⟨

ϵ(a)
i
n ,

j
n

ϵ(b)
k
n ,

l
n

⟩
H

⟨
ϵ(c)

i
n ,

j
n

, ϵ(d)
k
n ,

l
n

⟩
H

⟨
ϵ(e)

i
n ,

j
n

, ϵ
( f )
k
n ,

l
n

⟩
H
.

For simplicity, we introduce the functions that will be used throughout this paper: for r = 1, 2,

fr(x, y) = x2Hr + y2Hr − |x − y|2Hr ,

ρr(x − y) = |x − y + 1|2Hr + |x − y − 1|2Hr − 2|x − y|2Hr .

By the limit of Riemann sums, we have

J1(n; H) =
1
43

2∏
r=1

 n−1∑
i,k=0

fr

(
i
n
,

k
n

) (
1
n

)
ρ2

r (i − k)


=

1
43

2∏
r=1

 ∞∑
p=−∞

ρ2
r (p)

(n−1)∧(n−1−p)∑
i=0∨(−p)

fr
( i
n
,

i + p
n

) 1
n


→ 1

43

2∏
r=1

1
2(4Hr + 1)

∞∑
p=−∞

ρ2
r (p), for 0 < H1, H2 <

3
4
. (3.1)

By the similar argument as for J1(n; H) and the following inequality

∣∣∣∣∣⟨ϵ(a)
i
n ,

j
n

, ϵ(b)
k
n ,

l
n

⟩
H

∣∣∣∣∣ ≤ C ×



1
n2(H1+H2) , if a = 1, b = 2,

|ρ1(i − k)|
n2(H1+H2) , if a = 1, b = 3,

|ρ2( j − l)|
n2(H1+H2) , if a = 2, b = 3,

(3.2)

we can easily show that R1,n(H) converges to zero.
Now we consider the sequence G2,n. By the mean value theorem, the L2-norm of the first term in

G2,n can be bounded by

Cn2H2−1ϑ1(n; H)
∞∑

p=−∞
|ρ2(p)|ϑ2(n; p,H), (3.3)

where the sequences ϑ1(n; H) and ϑ2(n; p,H) satisfy

ϑl(n; H) =
n−1∑
i,k=0

∣∣∣∣∣∣ f1
(

i
n
,

k
n

)∣∣∣∣∣∣
(

1
n2

)
→

∫ 1

0

∫ 1

0
| f1(x, y)|dxdy,

ϑ2(n; p,H) =
(n−1)∧(n−1−p)∑

i=0∨(−p)

(
j( j + p)

n2

)2H2−1 (
1
n

)
→ 1

4H2 − 1
, if

1
4
< H2 <

1
2
.

Since 1/4 < H2 < 1/2, the sequence (3.3) converges to zero. By interchanging the role of H1 and
H2 in the first term of G2,n, we can show that the L2-norm of the second term in the sequence G2,n
converges to zero if 1/4 < H1 < 1/2. By a similar estimate as for R1(n; H), we can also prove that the
L2-norm of the third term in G2,n converges to zero if 0 < H1,H2 < 1/2.



Central Limit Theorem of the Cross Variation Related to Fractional Brownian Sheet 855

4. Proof of Main Theorem

For the proof of main theorem, we need the following theorem (Theorem 4 in Nualart and Ortiz-
Latorre (2008) or see Nualart and Peccati (2005)).

Theorem 2. Let {Fn = Ik( fn), n ≥ 1}, fn ∈ H⊙k for every n ≥ 1, be a sequence of square integrable
random variables in the kth Wiener chaos such that

E
[
F2

n

]
= ∥ fn∥2H⊙k → 1 as n→ ∞.

Then the followings are equivalent.

(i) The sequence {Fn, n ≥ 1} converges to a normal distribution N(0, 1).

(ii) limn→∞ E[F4
n] = 3.

(iii) For all 1 ≤ l ≤ k − 1, limn→∞ ∥ fn ⊗l fn∥H⊗2(k−l) = 0.

(iv) ∥DFn∥2H → k in L2(Ω), where D is the Malliavin derivative with respect to a Brownian sheet
B = {Bz, z ∈ [0, 1]2}.

By (i) and (iv) in Theorem 2, we will show the following lemma in order to prove that G1,n
L−→

N(0, σ2(H)).

Lemma 1. If 1/4 < H1 < 1/2 and 1/4 < H2 < 1/2, we have that as n→ ∞

∥DG1,n∥2H → 3σ2(H) in L2(Ω),

where D is Malliavin derivative corresponding to fBs BH .

Proof: By the rule of Malliavin derivative of the multiple stochastic integrals, the derivative of G1,n
is

DzG1,n = an(H)
n∑

k,l=1

[
I2

(
ϵ(2)

k
n ,

l
n
⊗̃ϵ(3)

k
n ,

l
n

)
ϵ(1)

k
n ,

l
n
(z) + I2

(
ϵ(1)

k
n ,

l
n
⊗̃ϵ(3)

k
n ,

l
n

)
ϵ(2)

k
n ,

l
n
(z) + I2

(
ϵ(1)

k
n ,

l
n
⊗̃ϵ(2)

k
n ,

l
n

)
ϵ(3)

k
n ,

l
n
(z)

]
.

By the formula for the product of the multiple stochastic integrals in Proposition 1, the norm
∥D•G1,n∥2H can be expressed as

∥D•G1,n∥2H = J4(n; H) + J2(n; H) + J0(n; H),

where Jr(n : H) ∈ Hr. By using the same arguments as for G1,n, the constant term J0(n; H) can
be written as J0(n; H) = 3J1(n; H) + R2(n; H), where R2(n; H) converges to zero. Hence we have,
by (3.1), that limn→∞ J0(n; H) = 3σ2(H). Similarly as for E[G2

1,n], we can write E[J2
4(n; H)] =

J2(n; H) + R3(n; H), where R3(n; H) converges to zero and

J2(n; H) = a4
n(H)

∑⟨
ϵ(1)

i
n ,

j
n

, ϵ(1)
k
n ,

l
n

⟩
H

⟨
ϵ(1)

i′
n ,

j′
n

, ϵ(1)
k′
n ,

l′
n

⟩
H

⟨
ϵ(2)

i
n ,

j
n

, ϵ(2)
i′
n ,

j′
n

⟩
H

×
⟨
ϵ(2)

k
n ,

l
n
, ϵ(2)

k′
n ,

l′
n

⟩
H

⟨
ϵ(3)

i
n ,

j
n

, ϵ(3)
i′
n ,

j′
n

⟩
H

⟨
ϵ(3)

k
n ,

l
n
, ϵ(3)

k′
n ,

l′
n

⟩
H
.
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By a similar argument as for J1(n; H), it is clear that

J2(n; H) ≤ C
n

∞∑
p,q,r=−∞

|ρ1(p)ρ1(q)ρ1(r)|
∑

k∈Dp,q,r,n

∣∣∣∣∣∣ f1
(

k + r
n

,
k + p + r

n

)∣∣∣∣∣∣ ×
∣∣∣∣∣∣ f1

(
k
n
,

k + q
n

)∣∣∣∣∣∣
(

1
n

)

×
∞∑

p,q=−∞
ρ2

2(p)ρ2
2(q)

∑
0∨(−p)≤ j≤((n−1)−p)∧(n−1)
0∨(−q)≤l≤((n−1)−q)∧(n−1)

∣∣∣∣∣∣ f2
(

j
n
,

l
n

)∣∣∣∣∣∣
×

∣∣∣∣∣∣ f2
(

j + p
n

,
l + q

n

)∣∣∣∣∣∣
(

1
n2

)
−→ 0 as n→ ∞,

where the set Dp,q,r,n is given by

Dp,q,r,n = {i ∈ Z : (0 ∨ (−p)) ∨ ((0 ∨ (−q)) − r) ≤ i ≤
(n − 1) ∧ (n − 1 − p) ∧ (((n − 1) ∧ (n − 1 − q)) − r)} .

Thus we have that limn→∞ E[J2
4(n; H)] = 0. By a similar estimate as for E[J2

4(n; H)], we can also
prove that limn→∞ E[J2

2(n; H)] = 0. Combining the above results, we obtain

E
[(
∥DG1,n∥2H − 3σ2(H)

)2
]

≤ 3
{
E

[
J2

4(n; H)
]
+ E

[
J2

2(n; H)
]
+

(
J0(n; H) − 3σ2(H)

)2
}
−→ 0 as n→ ∞.

Hence the proof of this lemma is complete. �

Applying Theorem 2, we have, from Lemma 1, that Gn
L−→ N(0, σ2(H)). The sequence {Qn} in

Theorem 1 can be written as

Qn = Gn +
1
2


(∫ 1

0
BH

s1,1ds1 +

∫ 1

0
BH

1,s2
ds2

)
−

 n∑
k=1

BH
k
n ,1

1
n
+

n∑
l=1

BH
1, l

n

1
n


 . (4.1)

Note that in L2(Ω)

n−1∑
k=0

BH
k
n ,1

(
1
n

)
→

∫ 1

0
BH

s1,1ds1 and
n−1∑
l=0

BH
1, l

n

(
1
n

)
→

∫ 1

0
BH

1,s2
ds2. (4.2)

Therefore, from (4.1) and (4.2), it follows that Theorem 1 holds.
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