DOI QR코드

DOI QR Code

Design of Headset MIMO Antenna for On-Body Application

인체부착형 Headset MIMO 안테나 설계

  • Kim, Sung-Jin (Department of Electronic & Computer Engineering, Hanyang University) ;
  • Kim, Dong-Ho (Department of Electronic & Computer Engineering, Hanyang University) ;
  • Kwon, Kyeol (Department of Electronic & Computer Engineering, Hanyang University) ;
  • Choi, Jae-Hoon (Department of Electronic & Computer Engineering, Hanyang University)
  • 김성진 (한양대학교 전자컴퓨터통신공학과) ;
  • 김동호 (한양대학교 전자컴퓨터통신공학과) ;
  • 권결 (한양대학교 전자컴퓨터통신공학과) ;
  • 최재훈 (한양대학교 전자컴퓨터통신공학과)
  • Published : 2011.12.31

Abstract

In this paper, a headset multiple-input multiple-output(MIMO) antenna for on-body application is proposed and the antenna performance with body effect and the impact on human body are investigated. The proposed MIMO antenna is composed of two planar inverted-F antennas(PIFA) above ground plane and an isolator located between the two antennas enhance the isolation characteristic. Simulation was carried to analyze the effect of human body on antenna performance when a human body is located in the near field of the antenna. According to the measurement result, the diversity performance of the proposed antenna can be considered good since ECC(Envelope Correlation Coefficient), which commonly indicates the performance of a MIMO antenna, remains below 0.1 over the ISM band. The measured SAR values for antennas 1 and 2 are 0.575 W/kg and 0.571 W/kg, respectively when 250 mW input power in engaged. These values satisfy the FCC guideline which states that the 1-g average SAR should be lower than 1.6 W/kg.

본 논문에서는 인체부착형 Headset MIMO(Multiple-Input Multiple-Output) 안테나를 제안하고, 인체의 영향을 고려한 안테나 성능과 인체에 미칠 수 있는 영향에 대한 분석을 하였다. 제안된 MIMO 안테나는 접지면 위에 PIFA(planar inverted-F antenna) 형태의 두 안테나와 격리도 특성 개선을 위하여 안테나 사이에 위치한 isolator로 구성되어 있다. 근거리장에 인체가 존재할 때 안테나에 미치는 영향을 분석하기 위하여 시뮬레이션을 수행하고, 팬텀을 이용하여 시뮬레이션과 측정을 하였다. 측정 결과, MIMO 안테나의 성능을 평가하는 파라미터 중 하나인 상관 계수(Envelope Correlation Coefficient: ECC)는 ISM 대역에서 0.1 이하의 값을 가지므로 제안된 MIMO 안테나의 diversity 성능이 우수함을 입증하였다. 또한, 측정된 SAR(Specific Absorption Rate) 값은 공급전력 250 mW에서 안테나 1, 2 각각 0.575, 0.571 W/kg이었다. 이는 1 g 평균 전자파 흡수율을 1.6 W/kg으로 제한한 FCC의 지침을 초과하지 않음을 알 수 있다. 따라서 제안된 인체부착형 Headset MIMO 안테나는 실용이 가능할 것으로 기대된다.

Keywords

References

  1. IEEE 802.11 WLAN WG homepage, http://www.ieee802.org/11
  2. IEEE 802.15 WPAN WG homepage, http://www.ieee802.org/15
  3. 최영우, 김유진, 이형수, 김재영, "IT/BT 융합분야에서의 WBAN 개발 동향", 정보통신산업진흥원, IT 기획시리즈, 융합기술 8, pp. 28-35, 2008년 8월.
  4. H. Jidhage, A. Stieman, "Hooked loop antenna concept for bluetooth headset applications", IEEE Antenna And Propagation Society Symposium, vol. 4, Jun. 2004.
  5. K. Subramaniam, M. Esa, and A. Subahir, "Compact printed square meander loop antenna for a bluetooth headset", Proceedings of the 2005 Asia Pacific Conference on Applied Electromagnetics(APACE2005), vol. 5, Dec. 2005.
  6. 윤영중, 이상흔, 김기준, "WBAN 안테나 설계 기술", 한국통신학회지(정보와 통신), 25(2), pp. 32-40, 2008년 2월.
  7. B. Widrow, S. D. Stearns, Adaptive Signal Processing, Prentice Hall Inc., pp. 302-311, 1985.
  8. IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate(SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, IEEE Standard 1528-2003, 2003.
  9. Human Exposure to Radio Frequency Fields From Hand-Held and Body-Mounted Wireless Communication Devices-Human Models, Instrumentation, and Procedures, Part 1: Procedure to Determine the Specific Absorption Rate(SAR) forHand-Held Devices Used in Close Proximity to the Ear(Frequency Range of 300 MHz to 3 GHz), International Electrotechnical Committee, Geneva, Switzerland, IEC 62209-1, Feb. 2005.
  10. ANSYS Inc. HFSS(High Frequency Structure Simulator) Ver. 13.
  11. S. Blanch, J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description", IEEE Electronics Letters, vol. 39, no. 9, May 2003.
  12. R. G. Vaughan, J. B. Anderson, "Antenna diversity in mobile communications", IEEE Transactions on Vehicular Technology, vol. 36, no. 4, pp. 149-172, Nov. 1987. https://doi.org/10.1109/T-VT.1987.24115
  13. The bluetest high performance chamber. [Online]. Available at: http://www.bluetest.se.
  14. Taga, "Analysis for mean effective gain of mobile antennas in land mobile radio environments", IEEE Transactions on Vehicular Technology, vol. 39, no. 2, pp. 117-131, May 1990. https://doi.org/10.1109/25.54228
  15. Y. Shin, S. Park, "Spatial diversity antenna for WLAN application", Microwave and Optical Technology Letters, vol. 49, no. 6, pp. 1290-1294, Jun. 2007. https://doi.org/10.1002/mop.22414
  16. "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", FCC, Washington, DC, Tech. Rep. OET Bull. 65 Supp. C, Jun. 2001.

Cited by

  1. Design of a MIMO Antenna Using a RF MEMS Element vol.24, pp.12, 2013, https://doi.org/10.5515/KJKIEES.2013.24.12.1113
  2. A Wideband Zeroth-Order Resonance Antenna for Wireless Body Area Network Applications vol.E96.B, pp.10, 2013, https://doi.org/10.1587/transcom.E96.B.2348