DOI QR코드

DOI QR Code

Controlled Transdermal Delivery of Loxoprofen from an Ethylene-Vinyl Acetate Matrix

  • 투고 : 2011.11.14
  • 심사 : 2011.12.03
  • 발행 : 2011.12.20

초록

Repeated oral administration of loxoprofen can induce many side effects such as gastric disturbances and acidosis. Therefore, we considered alternative routes of administration for loxoprofen to avoid such adverse effects. The aim of this study was to develop an ethylene-vinyl acetate (EVA) matrix system containing a permeation enhancer for enhanced transdermal delivery of loxoprofen. The EVA matrix containing loxoprofen was fabricated and the effects of drug concentration, temperature, enhancer and plasticizer on drug release were studied from the loxoprofen-EVA matrix. The solubility of loxoprofen was highest at 40% (v/v) PEG 400. The release rate of drug from drug-EVA matrix increased with increased loading dose and temperature. The release rate was proportional to the square root of loading dose. The activation energy (Ea), which was measured from the slope of log P versus 1000/T, was 5.67 kcal/mol for a 2.0% loaded drug dose from the EVA matrix. Among the plasticizer used, diethyl phthalate showed the highest release rate of loxoprofen. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the greatest enhancing effect. In conclusion, for the enhanced controlled transdermal delivery of loxoprofen, the application of the EVA matrix containing plasticizer and penetration enhancer could be useful in the development of a controlled drug delivery system.

키워드

참고문헌

  1. Almeida A., Possemiers S., Boone M.N., De Beer T., Quinten T., Van Hoorebeke L., Remon J.P., Vervaet C., 2011. Eur. J. Pharm. Biopharm., 7, 297-305.
  2. Amit, G., Shailaja, M., Bozena, M., Laurent, S., 2007. Application of orthogonal collocation and regression techniques for recovering parameters of a two-pathway transdermal drug-delivery model, Comput. Chem. Engin., 31, 107-120. https://doi.org/10.1016/j.compchemeng.2006.05.007
  3. Aungst, B.J., Rogers, N.J., Shefter, E., 1986. Enhancement of naloxon penetration through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides, Int. J. Pharm., 33, 225-234. https://doi.org/10.1016/0378-5173(86)90057-8
  4. Barry, B.W. Bennett, S.L., 1987. Effect of penetration enhancers on the permeation of mannitol, hydrocortisone and progesterone through human-skin, J. Pharm. Pharmacol., 39, 535-546. https://doi.org/10.1111/j.2042-7158.1987.tb03173.x
  5. Bhatia, K.S., Singh, J., 1998. Synergistic effect of iontophoresis and a series of fatty acids on LHRH permeability through porcine skin, J. Pharm. Sci., 87, 462-469. https://doi.org/10.1021/js970301f
  6. Bodmeier, R., Paeratakul, O., 1989. Evaluation of drug containing polymer films prepared from aqueous latexes, Pharm. Res., 6, 725-730 (1989). https://doi.org/10.1023/A:1015950825398
  7. Chi, S.C., Park, E.S., Kim, H., 1995. Effect of penetration enhancers on flurbiprofen permeation through rat skin, Int. J. Pharm., 126, 267-274. https://doi.org/10.1016/0378-5173(95)04137-0
  8. Chien, Y.W., Lambert, H.J., 1975. Solubilization of steroids by multiple co-solvent systems, Chem. Pharm. Bull., 23, 1085. https://doi.org/10.1248/cpb.23.1085
  9. Chien, Y.W., Lau, E.P.K., 1976. Controlled drug release from polymeric delivery devices IV: In vitro-in vivo correlation of subcutaneous release of norgestomet from hydrophilic implants, J. Pharm. Sci., 65, 488. https://doi.org/10.1002/jps.2600650404
  10. Cho, C.W., Choi, J.S. Kim, S.J., Shin, S.C., 2009. Enhanced transdermal delivery of loratadine from the EVA matrix, Drug Delivery, 16, 230-235. https://doi.org/10.1080/10717540902872264
  11. Crawford, R.R., Esmerian, O.K.. 1971. Effect of plasticizers on some physical properties of cellulose acetate phthalate films, J. Pharm. Sci., 60, 312-314. https://doi.org/10.1002/jps.2600600238
  12. Desai, S.J., Simonelli, A.P., Higuchi, W.I., 1965. Investigation of factors influencing release of solid drug dispersed in inert matrices, J. Pharm. Sci., 54, 1459. https://doi.org/10.1002/jps.2600541012
  13. Desai, S.J., Singh, P., Simonelli, A.P., Higuchi, W.I., Factors influencing release of solid drug dispersed in inert matrices II. Quantitation of procedures, J. Pharm. Sci., 55, 1224.
  14. Durrhein, H., Flynn, G.L., Higuchi, W.I., Behl, C.R., 1980. Permeation of hairless mouse skin I: experimental methods and comparison with human epidermis permeation by alkanols, J. Pharm. Sci., 69, 781. https://doi.org/10.1002/jps.2600690709
  15. Entwistle, C.A., Rowe, R.E., 1979. Plasticization of cellulose ethers used in the film coating of tablets, J. Pharm. Pharmacol., 31, 269-272. https://doi.org/10.1111/j.2042-7158.1979.tb13499.x
  16. Farhadieh, B., Boradkin, S., Buddenhagen, J., 1971. Drug release from methyl acrylate-methyl methacrylate copolymer matrix I : Kinetics of release, J. Pharm. Sci., 60, 209. https://doi.org/10.1002/jps.2600600210
  17. Gao, F., Beyer, G., Yuan, Q., 2005. Polymer Degradation and Stability, 89(3), 559-564. https://doi.org/10.1016/j.polymdegradstab.2005.02.008
  18. Golden, G.M., Mckie, J.E., Potts, R.O., 1987. Role of stratum corneum lipid fluidity in transdermal drug flux, J. Pharm. Sci., 76, 25-28. https://doi.org/10.1002/jps.2600760108
  19. Green, P.G., Guy, R.H., Hadgraft, J., 1988. In vitro and in vivo enhancement of skin permeation with oleic-acid and lauric acids, Int. J. Pharm., 37, 251-255.
  20. Higuchi, T., 1961. Rate of release of medicaments from ointment bases containing drug in suspension, J. Pharm. Sci., 50, 874. https://doi.org/10.1002/jps.2600501018
  21. Higuchi, T., 1963. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci., 52, 1145. https://doi.org/10.1002/jps.2600521210
  22. Jenquin, M.R., Liebowitx, S.M., Sarabia, R.E., McGinity, J.W., 1990. Physical and chemical factors influencing the release of drugs from acrylic resin films, J. Pharm. Sci., 79, 811-816. https://doi.org/10.1002/jps.2600790914
  23. Jungbauer, F.H.W., Coenraads, P.J., Kardaun, S.H., 2001. Toxic hygroscopic contact reaction to N-methyl-2-pyrrolidone. Contact Dermat., 45, 303-304. https://doi.org/10.1034/j.1600-0536.2001.450514.x
  24. Kim, D.K., Chang, I.K., Kang, C., Ryu, S.R., Shin, S.C., 2010. Enhanced controlled transdermal delivery of hydrochlorothiazide from an ethylene-vinyl acetate matrix, J. Pharm. Invest., 40, 151-157.
  25. Kandimalla, K., Kanikkannan, N., Andega, S., Singh, M., 1999. Effect of fatty acids on the permeation of melatonin across rat and pig skin in-vitro and on the transepidermal water loss in rats in-vivo, J. Pharm. Pharmacol., 51, 783-790. https://doi.org/10.1211/0022357991773140
  26. Lapidus, H., Lordi, N.G., 1968. Drug release from compressed hydrophilic matrices, J. Pharm. Sci., 57, 1292. https://doi.org/10.1002/jps.2600570803
  27. Loan H. Nguyen, P., Joke, A.B., 2005. Vesicles as a tool for transdermal and dermal delivery, Drug Discovery today : Tec., 2, 67-74. https://doi.org/10.1016/j.ddtec.2005.05.003
  28. Lopez. A., Llinares, F., Cortell, C., Herraez, M., 2000. Comparative enhancer effects of span 20 with Tween 20 and Azone on the in vitro percutaneous penetration of compounds with different lipophilicities, Int. J. Pharm., 202, 133-140. https://doi.org/10.1016/S0378-5173(00)00427-0
  29. Miyazake, S., Ishii, K., Sugibayashi, K., Morimoto, Y., Takada, M., 1982. Antitumor effect of ethylene-vinyl acetate copolymer matrices containing 5-fluorouracil on Ehrlich Ascites carcinoma in mice, Chem. Pharm. Bull., 30, 3770. https://doi.org/10.1248/cpb.30.3770
  30. Naik, A., Pechtold, L.. Potts, R.O., Guy, R.H., 1965. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans, J. Cont. Rel., 37, 299-306.
  31. Recta, R.G., Swantrant, K.J., Manoj, V., 2005. Colloids and Surfaces B: Biointerfaces, 41, 25-32. https://doi.org/10.1016/j.colsurfb.2004.09.008
  32. Shin, S.C., Cho, C.W., Oh, I.J., 2001. Effects of non-ionic surfactants as permeation enhancers towards piroxicam from the poloxamer gel through rat skins, Int. J. Pharm., 222. 199-203. https://doi.org/10.1016/S0378-5173(01)00699-8
  33. Shokri, J., Nokhodchi, A., Kashbolaghi, A., Hassan-Zadeh, K., Ghafourian, T., Barzegar-Jalali, M., 2001. The effect of surfactants on the skin penetration of diazepam, Int. J. Pharm., 228, 99-107. https://doi.org/10.1016/S0378-5173(01)00805-5
  34. Singh, P., Desai, S.J., Simonelli, A.P., Higuchi, W.I., 1967. Release rates of solid drug mixtures dispersed in inert matrices I. Noninteracting drug mixtures, J. Pharm. Sci., 56, 1542. https://doi.org/10.1002/jps.2600561203
  35. Squillante, E., Needham, T., Maniar, A., Kislaliglu, S., Zia, H., 1998. Codiffusion of propylene glycol and dimethyl isosorbide in hairless mouse skin, Eur. J. Pharm. BioPharm., 46, 265-271. https://doi.org/10.1016/S0939-6411(98)00030-7
  36. Taguchi, K., Fukushima, S., Yamaoka, Y., Takeuchi, Y., Suzuki, M., 1999. Enhancement of propylene glycol distribution in the skin by high purity cis-unsaturated fatty acids with different alkyl chain lengths having different double bond position, Bio. Pharm. Bull., 22, 407-411. https://doi.org/10.1248/bpb.22.407
  37. Takeuchi, Y., Yamaoka, Y.. Jukushima, S., Miyawaki, K., Taguchi, K., Yasuk a, H., Kishimoto, S., Suzuki, M., 1998. Skin penetration enhancing action of cis-unsaturated fatty acids with u- 9 and $\omega$-12 chain lengths, Bio. Pharm. Bull., 21, 462-469.
  38. Tanojo, H., Bouwstra, J.A., Junginger, H.E., Bodde, H.E., 1997. In vitro human skin barrier modulation by fatty acid : skin permeation and thermal analysis studies, Pharm. Res., 14, 42-49. https://doi.org/10.1023/A:1012099216060
  39. Yamakawa, N., Suemasu, S., Matoyama, M., Tanaka K., Katsu. T., Miyata, K., Okamoto, Y., Otsuka, M., Mizushima, T., 2011. Bioorg. Medicin. Chem., 19, 3299-3311. https://doi.org/10.1016/j.bmc.2011.04.050