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ABSTRACT. In the present paper, we are concerned with subordination problems related
to A-Robertson function. The radii of \-spirallikeness and starlikeness of A-Robertson
function are also determined.

1. Introduction and main results

Let D, = {z € C: |z] <r} for 0 <r <1 and D =D be the unit disc. Let A
be the family of functions f analytic in D, and A; be the subset of A consisting of
functions f which are normalized by f(0) = f'(0) —1 = 0. A function f € A is said
to be subordinate to a function F' € A in D (in symbols f < F or f(z) < F(2)) if
there exists an analytic function w(z) on D with |w(2)| < 1 and w(0) = 0, such that

f(z) = F(w(z))

in D. When F is a univalent function, the condition f < F is equivalent to f(ID) C
F(D) and f(0) = F(0). Let

Pr={peA:p(0)=1, Re~Pp(z) > 0}.

Here and hereafter we always suppose —7/2 < A < 7/2. Note that P, is a convex
and compact subset of A which is equipped with the topology of uniform conver-
gence on compact subsets of D. Since Py is the well-known Carathéodory class,
we call Py the tilted Carathéodory class by angel . Some characterizations and
estimates of elements in P, are known (for a short survey, see [11]).

For a function f € A, let

) Q) = LY
and .
Pi(z) =1+ ZJ]:, (S).
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It is worthwhile to note that

2Q(2)
Qr(z)

These quantities are important for investigation of geometric properties of analytic
functions. Next we will define two subclasses of analytic functions related to these
two quantities.

A function f € A; is said to be a A-spirallike function (denoted by f € 8Py) if

Qs(2) + = Py(2).

Qf € P,

Note that 8P is precisely the set of starlike functions normally denoted by 8*.
Sprirallike functions were introduced and proved to be univalent by Spacek [10] in
1932. For general references about spirallike functions, see e.g. [2] or [1].

A function f € A, is said to be a A-Robertson function if zf'(z) € 8Py, i.e.

Pf € Py.

Let Ry denote the set of these functions. Note that Ry is precisely the set of convex
functions sometimes denoted by K. Convex functions have been the subject of nu-
merous investigations, among which the following result was proved by MacGregor
[6] in 1975.

Theorem A. Let f € K. Then the subordination relation

() 2fyl2)
& o2

holds, where fo(z) = z/(1 — z).

We are interested in more general subordination problems related to M-
Robertson functions. For this purpose, we first introduce some specific functions
for convenience.

A distinguished member of R, is

(1 _ 2)1—26”‘ cosA _ 1
2eir cos A — 1

(z) =

A simple calculation yields

_ A6 _ e2iA
(2) Q)\(Z) - f)\(z) B 1—2— (1 — Z)1+6277>\’
Py(z) =142 V() 14 ez

fi(2) 11—z
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and

2Q\(2) _ ;
(3) Qa(2) + Ox(2) = Py(2).

In [4], Kim and Srivastava posed the open problem which is an extension of
Theorem A whether , )

=<
[z faz)
holds for f € Ry with general A. In other words, if

2q'(2)
(4) q(z) + e < Py(2)

in D, then whether
q=<Qx
holds in D for general A\? Relation (4) is a kind of Briot-Bouquet differential subor-
dinations which have a surprising number of important applications in the theory
of univalent functions. Many sources and references are given in [7].
In the present paper, we solve the above problem in a restricted disc and obtain
the radii of spirallikeness and starlikeness for Robertson funtions as well.

Theorem 1. Let g € A with q(0) = 1 satisfy the differential subordination

2q'(z)
(5) q(z) + ) < Px(2)

and Ry (\) be defined by
(6) Ri(A) =sup{r <1 :Qx(rz) < Px\(rz) inD}.
Then
q(2) < Qx(2)
in |z| < Ri(N).

By the discussion in Section 1, we can deduce the following corollary immedi-
ately from Theorem 1.

Corollary 1. Let f € Ry. Then
1) 2R()
[z A)
in |z| < R1(A\), where Ri(X) is given in (6).

Remark 1. The radius of \-spirallikeness of A-Robertson functions is at least

Ri(N), since ) £
zf'(z z2fi(z
CIREAC

Py(2)
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in Dg,(x) for any f € Ry.

Remark 2. For 0 <r <1, let

¥a(r) = max |PTH(Qx(r2))/7]
Imrz =1+ (1—rz)"
lz2l=1|r  1—(1—rz)™

where m = 1+ 2. We see that (1) is an increasing function defined on [0,1)

with ¥»(0) = 0. By the definition of subordination, Ri(\) defined in (6) could be
expressed in terms of Py :

Ri(A) = sup{r <1 :4a(r) <1} =5 (1).

Theorem 2. Let ¢ € A with ¢(0) = 1 satisfy the differential subordination

2q'(2)
(7) q(2) + ) < Py(2).

Then
q(Raz) < Py(z)

in D, where
2

(8) Ry = Ro()) = .
V44 2v3]sin(2))

Corollary 2. The radius of starlikeness of A-Robertson functions is at least Ra()\)
given in (8).

Note that R;(0) = R3(0) = 1, thus both Corollary 1 and Corollary 2 imply
Theorem A. Note also that in [1], Ahuja and Silverman posed the problem to find
the radius of starlikeness for all A-Robertson functions. Corollary 2 implies that
this radius is at least

Ry =min{Ry(\) : —1/2 < A < 7/2} = Ry(n/4) = V3 —1~0.732.

Libera and Ziegler in [5] have shown that the radius of close-to-convexity for all
A-Robertson functions is approximately 0.99097524 and the radius of convexity is

V2/2.
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2. Proofs of resluts
In order to obtain our main results, the following lemmas are required.
Lemma 1([11]). Let p € P5. Then we have
Ip(2) — A(r)] < B(r),

where ,
1+ r2e2it B(r) = 2r cos A
_ r

1—r2 1—r2

A(r) =
and r = |z| < 1. Equality holds if and only if p(z) = Px(zz) with |x| = 1.

(
Lemma 2([7, Lemma 2.2d]). Let g(z) and h(z) be in A with g(0) = h(0). If g A h
in D, then there exist two points zg with |z0| < 1 and no with |no| =1 and s > 1
such that
Q(D\zo\) - h’(]D))>

9(20) = h(no)
and
209’ (20) = smoh’(no)-

The next lemma is due to Nunokawa [8]. We only quote the relevant part.

Lemma 3([8]). Let p(z) € A satisfy p(0) =1 and p(z) # 0 in D. If there exsits a
point zg € D such that RNp(z) > 0 in |z| < |z0| and p(z0) = ia where a € R\ {0},
then

where k> (a+1/a)/2 ifa >0 and k < —(a+1/a)/2 if a < 0.

Proof of Theorem 1. For simplicity, we let R = R1()\) and p(z) = q(z) +2q'(2)/q(2),
thus p € Py. If ¢(z) £ Qx(z) in |z| < R, then Lemma 2 implies the existences of zg
with |z9| < R, no with |no] = R and s > 1 such that

9) q(D),)) C QA(D),
q(z0) = Qx(mo),
20¢' (20) = sm0Q\ (10).-
Thus in view of (3), (5) and (9), we have
204’ (20)
q(zo)

_ 0@ (10)
= Qalm) 570 o)

= sPy(n0) + (1 — 8)Qx(n0)-

(10) p(20) = q(20) +
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Therefore (10) and Lemma 1 show that

Ip(z0) —A(R)] = [s(Px(n0) — A(R)) — (1 = s)(Qx(n0) — A(R))]|
> |s(Px(mo) = A(R))[ = (s = DI(@x(m0) — A(R))]
> sB(R)—(s—1)B(R)
= B(R)
which contradicts with p(z) € Py. Therefore we get the assertion. O

Proof of Theorem 2. For simplicity, we let R = Ro(A) and p(2) = q(z) +2¢'(2)/q(2),
thus p € Py. If ¢(Rz) £ Py(z) in D, it follows from ¢(0) = 1 that there esists a
point zg € D such that Rg(Rz) > 0 for |z| < |20] and ¢(Rz) = ia where a € R\ {0},
then by Lemma 3, we have
Rzoq' (Rzo)
q(Rzo)
where k > (a+1/a)/2if a >0 and k < —(a+ 1/a)/2 if a < 0. Therefore

— ik,

Rzpq' (Rz)
Q(Rzo)

which implies p(Rzp) € Q since |a + k| > V3, where Q = {it, |t| > \/5} Next we
will show that

p(Rz0) = q¢(Rzo) + = ia + ik,

p(Dr)NQ =2,

which contradicts the above assertion. Since p € P, it is sufficient to prove for
functions Py(z). Suppose that there is a point z; € D such that Py\(z1) = ity with
[to| > V/3, then a simple calculation gives that

it — 1
2= 5.
! ity + e2iA
Hence
) t5+1 4
‘Z1| = 2 . = . =R
3+ 1 — 2tgsin(2X) ~ 44 21/3|sin(2))|

since [to| > v/3. Therefore Py(Dg) N Q = @. The proof is completed. O
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